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Proliferating cell populations at steady-state growth often exhibit broad protein distributions with
exponential tails. The sources of this variation and its universality are of much theoretical interest. Here
we address the problem by asymptotic analysis of the population balance equation. We show that the
steady-state distribution tail is determined by a combination of protein production and cell division and is
insensitive to other model details. Under general conditions this tail is exponential with a dependence on
parameters consistent with experiment. We discuss the conditions for this effect to be dominant over other
sources of variation and the relation to experiments.
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Biological cell populations are diverse in their physi-
ological properties, even if genetically identical. Since
physiology rather than genetics ultimately carries biologi-
cal function, there is much interest in understanding this
aspect of biological variation. A good model system for
this problem is a microorganism population that is geneti-
cally uniform and grows under uniform conditions; these
systems have been studied for many years, and have re-
cently received renewed attention following developments
in experiment design and technique of single-cell measure-
ments (reviewed by [1,2]). Experiments using fluorescence
tagging combined with microscopy and cytometry have
focused on variation in particular proteins inside cells,
while theoretical studies have provided models of specific
circuits and noise sources. Under steady-state growth con-
ditions, several experiments have shown that even for
regulated proteins, distribution shapes are insensitive to
many details and are often observed to be broad with
exponential tails [3,4]. This calls for a more physical

perspective of the problem, raising questions such as the
universality of the resulting distributions. We here show
that an exponential tailed distribution with the correct
dependence on system parameters follows from a descrip-
tion involving a balance between deterministic protein
production and dilution at cell division if these processes
satisfy reasonable conditions. Such tails, reflecting varia-
tion in division time, are thus expected even if stochastic
fluctuations in gene expression are negligible. The condi-
tions for this effect to be dominant relative to noise in
protein production are discussed.

A general theoretical framework for describing popula-
tion distributions of quantities that obey a balance of
growth and division, such as cell size or protein content,
is the population balance equation (PBE) [5,6]. In its most
general form it can incorporate many details and multiple
internal cellular properties. We here focus on the case
where the relevant physiological property of each cell
can be described by a single variable x [7,8]:
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Here f�t; x� is the probability density for the quantity x at
time t in the population, and g�x� is the individual growth
rate of x. Cell division is assumed to follow a ‘‘sloppy
control’’ mechanism [9]: b�x� is the probability per unit
time for a cell of quantity x to divide. Once division occurs,
d�p� is the probability for dividing into two daughter cells
with fractions p and 1� p of the mother cell. To obey
mass conservation d�p� � d�1� p�. The last term in the
equation accounts for normalization. Underlying this
model is the assumption that the growth process occurs
gradually and with small fluctuations throughout the cell
cycle, whereas division abruptly induces a large change
in x.

A large body of previous work on this model is dedi-
cated to theorems regarding the existence and uniqueness
of solutions [10], numerical algorithms ([11] and referen-

ces there) and special case solutions [12]. Traditionally the
coordinate x was interpreted as related to cell size (mass,
linear dimension, etc.), and the dependence of the proba-
bility per unit time to divide on cell size reflects the
combination of deterministic size-dependent and random
aspects of cell division [9]. However, for our purpose of
analyzing the asymptotic properties of the steady-state
distributions, x can also be interpreted as the amount of a
particular protein or molecule in the cell, any quantity
which is produced and preserved at cell division. This
follows because the probability per unit time to divide
generally saturates for large values of cell size, age, or
protein content, reflecting the inherent probabilistic com-
ponent of the cell cycle [13]. This point, as well as the
effect of an additional stochastic component in g�x�, will
be further discussed below.
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Our analysis begins by considering the steady-state
solution of Eq. (1). Assuming such a solution exists,
f�t; x� � f�x� and the last integral becomes a constant,R
1
0 b�x�f�t; x�dx � R. This constant is the specific growth

rate of the number of cells in balanced exponential growth,
and can be viewed as a parameter in the equation.
Therefore at steady state,
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Now consider the incoming flow contributing to the proba-
bility density at large x, where f�x� is a decreasing func-
tion. It comes from two processes: growth, bringing cells of
low x to a higher one; and division, breaking high-x cells
into pairs of smaller x. If the probability density decreases
rapidly enough, then for large x the first of these incoming
flows is dominant over the second. We shall assume that
this is the case for now, neglect the integral term represent-
ing the second flow in Eq. (2), and return to examine the
consistency of this assumption later. One then obtains the
following ordinary differential equation:
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A related integral was found for the case of exactly sym-
metric division and a finite ranged variable [7]. Here we
argue that in general under the assumption of a rapidly
decreasing f�x� the ratio between two points at the tail of
the distribution is given by Eq. (4) with the limits of
integration at the two points.

If x represents cell size, g�x� is the growth function of the
individual cell. Experiments directly measuring this func-
tion are not straightforward [14]; theoretical works have
mostly assumed either linear or constant functions for
simplicity. If x is interpreted as the amount of a protein,
then a constant g represents a mean rate of protein produc-
tion that is independent of the protein level. Assuming
g�x� � � and a saturating probability per unit time to
divide b�x� ! b0 for large x,

 f�x� � e��x; � � �b0 � R�=� (5)

Returning now to the question of the validity of the naive
approximation Eq. (4), a resulting exponential tail hints to
consistency of the approximation since the function de-
creases rapidly. More precisely, we assumed that
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Substituting the above exponential one finds that this re-

quirement is satisfied by x
 dmax�=�
2, where dmax �

maxpfd�p�g and � � 2b0=�; this defines the regions of
consistency of the approximation.

The population balance equation Eq. (1) can be solved
numerically ([11] and references there). We have devel-
oped a numerical procedure to solve the time-dependent
equation on a semi-infinite range based on the method of
time-evolution operators [7]. Figure 1 shows the steady-
state solution with functions g, b that saturate at large x. As
predicted by the argument above, the distributions exhibit
exponential tails. Starting the dynamics from various initial
conditions always relaxed to the same steady-state distri-
bution. An exponential tail was found for all division
functions d�p�, consistent with Eq. (5).

Using this observation, we proceed without much loss of
generality to a more accurate asymptotic approximation
for the case d�p� � 1. Assuming once again g�x� � � and
b�x� ! b0 for large x, Eq. (2) is equivalent, by a change of
variables and an additional differentiation, to
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x � 1 is an irregular singular point of this equation [17].
Trying a solution f�x� � exp��x�x���x� with � 2R and
��x� analytical at x � 1, we obtain to leading order

 f�x�x!1 � C1x
�=�e��x � C2x

��=�: (8)

Since Eq. (7) is of second order we have two independent
solutions; however, as 0<R � b0 it follows that 1 �
�=� < 2 and hence the mean of the second solution di-
verges. This observation, while obviously not a proof of
uniqueness, supports the numerical result of relaxation to a
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FIG. 1. Steady state population distributions with exponential
tails. Numerical solution for constant growth g�x� � � and
saturating probability of division per unit time. (�, �): b�x� �
b0H�x� ��; d�p� sum of two Gaussians at p � 0:3 and p � 0:7.
This function describes asymmetric division, such as that ob-
served for budding yeast cells. (5, �): b�x� � b0

2 �tanh�k�x�
���� 1� with k � 5, � � 1 and d�p� � 1. Asymptotic approx-
imations [Eq. (8)] are shown by solid lines.
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unique steady-state distribution from many initial
conditions.

An exactly solvable case occurs when b�x� � b0, then
f�x� � �2xe��x. Here R � b0, then � � � so the first
asymptotic function in Eq. (8) is an exact solution; the
second, f�x� � x�1, is non-normalizable. The PBE here
reduces to a model studied in [18], where protein is pro-
duced at a constant rate and cells divide with constant
probability per unit time.

We thus establish that under general conditions the
steady-state distribution exhibits an exponential tail, as
has been observed in several experiments [3,4]. The ex-
ponential tail is obtained neglecting variation in the source
g, and stems from a balance between the first-order ki-
netics of cell division and a constant or saturating de-
terministic source. The dependence of the exponent on
parameters is such that upon increase of production,
represented by g, the exponential tail broadens. This is
consistent with experimental observations on protein pro-
duction at steady state in populations of yeast cells [4], and
inconsistent with most models that account for population
variation by production noise.

Formally Eq. (4) indicates that the distribution tail is
determined by the ratio of the growth and division func-
tions, not by each of them separately. Thus, if for large x
these functions do not saturate but have the same x depen-
dence, an exponential tail will also arise. Figure 2 shows
the numerical solution for linearly increasing g�x�, b�x�,
supporting this prediction. While not immediately relevant
to protein production, this result illustrates how exponen-
tial tails can arise by different growth and division func-
tions maintaining constant ratio. It thus supports our
analytic conclusion about how the combination of these
functions shapes the distribution tails.

A growth, or production, function g�x� that increases
with x is relevant for several biological contexts. For
example, if food uptake is related to the surface area of

the organism and x is a linear dimension, then growth is an
increasing function of x [7]. For g�x� � �x one can show
that R � � and therefore � � �=2� 1. Using the same
procedure as before to write an equivalent ordinary differ-
ential equation for b�x� saturating to b0 at large x and
d�p� � 1, we find
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This is the Euler equation [17] with power-law solutions
f�x� � Cx	 where 	 � ��=2;�2. Of the two indepen-
dent solutions to the asymptotic equation, only 	 � ��=2
with � > 4 is consistent with f�x� being a probability
density with a finite mean. Indeed, numerical simulations
in this parameter regime always relax to a steady state with
a tail f�x� � x��=2 � x�b0=�; see Fig. 3 for a comparison
between the numerical solution and the asymptotic tail.

The special case of b�x� � b0H�x� ��, where H is the
Heaviside function with threshold �, is exactly solvable.
Here the Euler equation (9) holds exactly in the region x >
�. By continuity and normalization requirements one can
show that the coefficient of the solution with 	 � �2
vanishes, and the unique solution is

 f�x� �
�
�1� 2=�� 1

� x � �
�1� 2=����=2�1x��=2 x > �

: (10)

Once again, this solution is valid for � > 4 (b0 > 2�).
Note that the naive argument leading to Eq. (4) is self-
consistent in this case only for a more severely limited
region of parameters (b0 
 3�).

In summary, we used the population balance equation to
study the interplay between intracellular and population
processes in shaping the steady-state distribution in a
dividing cell population. The novel component in our
approach is to consider the variable x describing the cell
state as unbounded and to focus on the asymptotic prop-
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and d�p� � 1. This example shows that the distribution tail is
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�tanh�k�x� ���� 1� with k � 2, � � 2 and d�p� � 1.
Numerical solutions (symbols) are shown with asymptotic ap-
proximation to the tail (lines).
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erties of its distribution. This enables us to extend the
interpretation of x as a particular protein or molecule in
the cell, since asymptotically the probability per unit time
to divide becomes independent of the variable, b�x� ! b0

for large x. This probabilistic component of the cell cycle is
a well-established property for many cell types [9,13].

We have shown that generally the functional forms of
mean growth or production g�x� and probability per unit
time to divide b�x� determine the tail of the distribution
through a particular combination, Eq. (4). Because the PBE
takes into account the kinetics of cell division as a discrete
process, randomness in the timing of cell division is suffi-
cient to yield an exponentially tailed distribution at steady
state. In reality, the single-cell function g�x� itself has a
stochastic component, and this can be added to the model
using the diffusion approximation. Such an extension will
be a good approximation if 
g2

hgi2
	 1

b0�R
.

At the other extreme, if internal stochasticity is domi-
nant, it should be modeled in detail. For example, previous
work has shown that bursts in mRNA production cause an
exponential distribution of protein produced in each cell,
which in turn is reflected as exponential tails in the popu-
lation distribution [19–21]. Division can then be assumed
synchronous with symmetric binomial distribution [19,20],
or it can be altogether neglected and described as a con-
tinuous dissipative process [21], without changing the
result. The validity of each regime depends on the relative
variation of the two processes, production and division,
and on their relative time scales. One way to identify the
regime in experiment is the dependence of the exponential
tail on parameters: if the tail results from microscopic
effects, then a larger mean production results in relatively
narrower distributions and the slope of the tail remains
intact. However, if the exponent results from a combination
of sloppy division and deterministic production as sug-
gested here, then larger mean production results in a
broader exponential tail. Experiments on yeast populations
have shown that increasing the mean protein production,
either by an increase in the number of promoters or by
adding inducing agents, increases the mean and at the same
time broadens the exponential tail [4]. This dependence
suggests that it is the population effects, rather than micro-
scopic noise, which govern the distribution tails in these
experiments.

In any interpretation of x, our results predict that the
distribution tails will be insensitive to the division function
d�p�. This is supported by the universality of protein
distribution tails in yeast cells grown under various
steady-state conditions [4]. Yeast cells divide asymmetri-
cally, with the degree of asymmetry depending on growth
rate and environment [9]. The observation that under all
growth conditions the protein distribution exhibited expo-
nential tails is consistent with our prediction. Moreover,
unpublished results on bacteria populations grown at

steady state [22] show that even this symmetrically divid-
ing organism exhibits similar exponential tails.

Taken together, our results suggest that exponential tails
in the distribution of an abundant protein in a dividing
population may be a much more universal feature than
previously thought, since they reflect fundamental proper-
ties of randomness in cell division times and not neces-
sarily the particular microscopic details of protein
production circuits.
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