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For cell division to take place, proteins that carry it out need to accumulate to a

functional threshold. Most of these divisome proteins are highly abundant in the cell,

and accumulate smoothly and approximately exponentially throughout the cell cycle.

In this threshold-crossing process, stochastic components arise from variation from

one cycle to the next of accumulation rate and division fraction, and from fluctuations

of the threshold itself. How these combine to determine the statistical properties of

division times is still not well understood. Here we formulate this stochastic process

and calculate the statistical properties of cell division times by using first passage

time (FPT) techniques. We find that the distribution shape is determined by a ratio

between two coefficient of variations (CVs), interpolating between Gaussian-like and

long-tailed. Mean, variance and skewness of division times are predicted to follow

well-defined relationships with model parameters. Publicly available single-cell data

span a broad range of values in parameter space; the measured distribution shape and

moment scaling agree well with the theory over the entire range. Because of balanced

biosynthesis, the accumulation dynamics of any abundant protein – as well as cell

size – predicts division time statistics equally well using our model. These results

suggest that cell division is a multi-variable emergent process, which is nevertheless

predictable by a single variable thanks to coupling and correlations inside the system.

Introduction: What makes a cell divide? this question has been at the center of scientific

investigation for decades. Over the years many attributes have been considered as triggering

cell division: elapsed time, cell size, DNA replication, accumulation of proteins to threshold,

as well as combinations of these events (1–9). In particular, divisome proteins - which

carry out the biophysical steps leading to division - need to accumulate to a functioning

threshold in order for division to be carried out (10–12). This, as well as other cellular

events that depend on the presence of sufficient protein content, marks the problem of

protein accumulation to threshold as a central one in several different contexts.

Most previous work has considered the accumulation of low-copy-number proteins, which

is noisy and strongly affected by irregularities of bursting to a fixed threshold (13–17).

However, many functionally important proteins are expressed at high copy numbers in the
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cell; their accumulation generally proceeds smoothly through the cell cycle (18–20), and

noise is negligible over this timescale. As an important quantitative result of single-cell

tracking, it was shown that the accumulation of many proteins, as well as cell size, between

consecutive divisions is exponential to a good approximation. Such behavior was found for

yeast and different bacterial cells (19, 21–24).

These dynamics define a different threshold crossing problem, in which smooth expo-

nential accumulation needs to reach a threshold. Previous work considered such a process

with white noise on top of a fixed exponential accumulation rate, and a constant thresh-

old (20, 24–26), or a constant accumulation rate and a stochastic threshold (27). Thus in

practically all previous models and analyses, the basic rate of exponential accumulation was

considered fixed. This was motivated by single-cell measurements in E. coli that showed a

narrow distribution of exponential rates (24, 28, 29). However, other data-sets in similar

experiments on the same bacteria shows a more significant variability (18–20). It is therefore

crucial to develop a theoretical framework that covers this range of behaviors and considers

both the stochastic threshold and cycle-to-cycle variability in accumulation rate.

In what follows we develop such a framework and compare the results to multiple pub-

lished data-sets of microbial single-cell tracking. First, we define and analyze a stochastic

process in which a single protein accumulates exponentially to cross a stochastic thresh-

old. We analytically calculate the distribution of division times using the first passage time

(FPT) approach, identify the important variables controlling this distribution and develop

limiting approximations to the general expression. Next we investigate the agreement of

these quantitative results with published single-cell data. These data span a significant

range of parameters of the threshold-crossing problem and exhibit excellent agreement with

the theory in the entire range. Finally, we show that, thanks to balanced biosynthesis, a

similar level of agreement holds when applying the threshold-crossing model to different

highly expressed proteins as well as to cell size. These results suggest that cell division is

an emergent property arising from multiple coupled (and therefore correlated) variables.

Results

Model Development: Consider a protein whose copy number nk(t) accumulates across the

kth cell cycle, finally reaching a threshold c that triggers division. Continuous measurements

of fluorescently tagged, highly expressed proteins over time reveal smooth, exponential-like

accumulation throughout each cell cycle interrupted by abrupt drops at division. Fig. 1a

shows a small portion of such a measurement, which provides the inspiration to our model.

Over the kth cycle of growth and division, protein content can thus be described as

nk(t) = nk(0)e
αkt + ξ(t), 0 < t < Tk (1)

nk+1(0) = nk(Tk)fk, (2)
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FIG. 1. Stochastic exponential accumulation to a fluctuating threshold. (a) The

accumulation of highly expressed protein in bacteria proceeds in a smooth, exponential-like manner.

Coarse-grained parameters αk and n(Tk) are estimated directly from the data by exponential fitting.

(b) Distribution of effective exponential accumulation rates αk (best fit to data within each cycle),

collected across cycles. Coefficient of variation χα = σα/µα ≈ 0.3. (c) Distribution of final protein

content n(Tk) across cycles, provides an indirect measure of fluctuations in threshold c under the

assumption of division triggered by threshold crossing. Coefficient of variation ≈ 0.2. Data in

(a),(b),(c) from (18). (d) Simulated protein trajectories (lighter blue) follow smooth exponential

accumulation with varying rates across cycles. Cell division occurs when crossing a fluctuating

threshold (darker blue; distribution on the right). Top: Resulting distribution of division times,

model simulation (histogram) and analytic solution (line).

where αk is the exponential accumulation rate during cell cycle k, Tk is its duration and

fk is the division fraction at its end. The cell divides when the protein reaches a threshold

n(Tk) = c(Tk), which itself is a stochastic process, described by an Ornstein-Uhlenbeck (OU)

process over the long timescale of many cycles

dc

dt
= γ(µc − c) + η(t), (3)

Here the threshold has mean µc, and δ-correlated Gaussian noise ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ =
2Dδ(t − t′). The noise controls the variance of c by σ2

c = D/γ, while the restoring force γ

determines the typical correlation time as τc = 1/γ.

There are generally four sources of noise in this model: accumulation rate αk and division

fraction fk can vary across cycles; ξ(t) is added white noise to the smooth accumulation;

and the threshold c fluctuates with variance σ2
c . An example of the distribution of αk is

presented in Fig. 1b, showing an approximately Gaussian shape with CV of 0.3. Division

noise, in contrast, shows a CV of only a few percent in all available data-sets (30, 31). We

thus neglect this noise and take fk = 1/2. We shall also neglect the white noise ξ(t), since
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it contributes negligibly to the statistical properties when variation in αk are taken into

account (18, 19). An estimate of the stochastic effect of threshold can be inferred from the

distribution of final protein values just before division, nk(Tk). Fig. 1c shows that this can

be a significant noise source, with CV ≈ 0.2, and is not neglected. Our model thus consists

of smooth exponential accumulations, with rate varying randomly from one cycle to the

next, crossing a threshold that follows OU dynamics and dividing in half.

Model Solution: The stochastic threshold crossing model described above can be analyt-

ically solved as a first passage time (FPT) problem, with the Ornstein-Uhlenbeck Green’s

function as input (32–35). Recent work has derived the distribution of threshold crossing

events in this model for a fixed accumulation rate α (27). To extend to variable accumula-

tion rates, we assume that αk is drawn at each cycle k from a Gaussian distribution with

mean µα and standard deviation σα (see Fig. 1b).

We begin by considering the case of rapid threshold fluctuations, τc << T ; the threshold

is then a white Gaussian variable with coefficient of variation χc. Using a Taylor expansion

and ignoring higher order terms of α (detailed description in Appendix A), we find the cell

division time distribution

P (T ) =
(µαχ

2
c + σ2

αT (χ
2
c + ln 2))√

2π(χ2
c + (σαT )2)3/2

exp

[
−(µαT − χ2

c − ln 2)2

2(χ2
c + (Tσα)2)

]
. (4)

In this expression, the mean accumulation rate µα sets the scale for the division time,

whereas the two CVs – χα of the accumulation rates and χc of the threshold – determine the

distribution shape. Two simple limits can be defined, when one noise source is dominant

over the other. In the first, χc ≪ χα, random exponents have to cross an almost constant

threshold. Then, the crossing times are given by the random variable ln 2/α; for Gaussian

α we have

P (T ) =
ln 2√
2πσ2

α T
2
exp

[
−(ln 2/T − µα)

2

2σ2
α

]
. (5)

This is the reciprocal of the Gaussian accumulation rates, scaled by ln 2. This distribution

has a heavy tail: in the limit of large T , i.e., T ≫ ln 2/µα, it decreases as P (T ) ∼ T−2.

While it does not admit finite moments, we shall see that it provides a good approximation

to the measured distributions in the relevant regime.

At the other extreme, where threshold fluctuations are dominant χc ≫ χα, we find

P (T ) =
µα√
2πχ2

c

exp

[
−(µαT − ln 2− χ2

c)
2

2χ2
c

]
, (6)

which is a Gaussian distribution with mean (ln 2+χ2
c)/µα, and variance χ2

c/µ
2
α. We see that

threshold noise shifts the peak of the distribution and at the same time defines its variance.
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In summary, under the condition of a rapidly fluctuating threshold, τc << T , we find a

non-universal distribution whose shape depends on the relative size of the two variances,

accumulation rate and threshold. It interpolates between a Gaussian shape when rates are

rather uniform, to a skewed heavy-tailed shape when they exhibit significant variation.

Solving the threshold crossing problem analytically in the limit of slowly fluctuating

threshold, τc ≫ T , is more difficult. However, numerical simulations reveal that once rate

variability is present in the model, the division time distribution is insensitive to the thresh-

old correlation time (Fig. 8 in Appendix D). In contrast, for the exponential threshold-

crossing problem with a fixed accumulation rate, the distribution shape varies continuously

with the threshold characteristic time. Since all experimental data have variable exponential

rates, it is sufficient to use our results on the white threshold limit (Eq. 4) when comparing

our results to experimental data. This comparison is presented next.

Comparison to data: In the comparison of our results to experiments, the parameters that

define the process – µα, σα, χc – will be estimated from the data to provide input to the model.

These will be used to predict statistical properties of the division time, its distribution and

relation between moments, as predicted by the results presented above. These predictions,

in turn, will be tested against the empirical statistical properties of division times in the

data.

Many groups have utilized mother machine microfluidic devices to monitor single cells

as they grow and divide over multiple cycles (11, 18–20, 23, 28, 29, 36, 37). In these

experiments typically cell size, and sometimes fluorescently labeled proteins, are measured.

Thus, accumulation rates are directly measurable from the data, and their mean and variance

are estimated. Additionally, we estimate the stochastic properties of the threshold – mean

and variance – from the final value of these variables just before division.

Fig. 2 displays, in its middle panel, a parameter plane consisting of these two empirically

estimated CVs: the plane of (χc, χα). Each point represents one experiment where single-cell

traces were pooled to estimate the parameters. It can be seen that χα (y axis, quantifying

variability in accumulation rates) spans a broad range of approximately ten-fold between

0.05 to 0.5. In comparison, χc (x-axis, quantifying variability in threshold) is more restricted

between 0.1 and 0.27. The two parameters are weakly correlated across experiments, so that

extreme cases where one is dominant over the other are not found in the data. Nevertheless,

they span both regions where either one is large than the other – both sides of the diagonal.

Two of the data-sets contain both cell size and protein measurements, shown in the same

color with different symbols. The location of these two types of measurements in the plane

is very close to one another relative to the entire spread; the significance of this observation

will become clear shortly.
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FIG. 2. Single-cell data agrees with theoretical predictions. Plot of χα vs χc obtained

from several experimental data sets (11, 18–20, 28, 29, 36, 37), which span two different regimes,

χα > χc and χα < χc. The distribution of cell division times are more skewed and deviate more

from the Gaussian (dashed lines) when χα > χc (histograms on the left); this deviation is smaller

when χα < χc (histograms on the right). In the plot of cell division time distribution, the bars

are obtained from different experiments, solid lines are obtained from Eq. (4), and dashed lines are

Gaussian fits.

We used these two parameters and the average µα to compute the distribution of

threshold-crossing events from our model, and plotted them (solid lines) together with

the measured division time distribution (colored histograms); four plots are displayed in

the figure, spanning different regimes of the parameter plane. Other data sets are shown in

Fig. (4) of Appendix A. Note that there are no fitting parameters in this procedure. The

agreement is excellent in all cases, and even in the Gaussian-like limit our model provides a

better fit than a Gaussian distribution (dashed black lines). This agreement indicates that

the stochastic process we defined indeed captures the main determinants of cell division at

a statistical level, over a range of qualitatively different distribution.

For cell division to occur, several different proteins must accumulate to their functional

threshold (28). The question arises, which protein should we measure in order to compare

to predictions of the theory? In particular, the data of Fig. 2 correspond to cell size

and arbitrary proteins - not necessarily related to cell division. It is not a-priori obvious

why these measurements would predict division time distributions as well as they do. To

understand the relevance of these data, we note that different proteins’ accumulation rates

are tightly correlated to one another and to the accumulation rate of cell size, while most

variability is expressed between one cell cycle and the next (18–20). This is demonstrated

in Fig. 5(b) of (19) and Fig. S5 of (38). It suggests that division time statistics may not
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be sensitive to the phenotype chosen – specific protein, or cell size – as long as it is an

abundant component, accumulating smoothly and approximately exponentially. In support

of this hypothesis, in Fig. 5 of Appendix A we plot the generation time distributions (Eq. 4)

derived from parameter values {µα, σα, χc} of both the cell size and protein data, for those

experiments where the two sets of measurements are available. Both predictions (solid and

dash-dot lines) are shown together with the empirical histograms, highlighting the similarity

between them and their consistency with the data.

FIG. 3. Moments of cell division time depend on model parameters as predicted. If

exponential accumulation to threshold is a strong determinant of cell division time, then scaling

relations between moments of two random variables – exponential accumulation rate and cell

division time – should obey specific predictions. (a) The means are inversely proportional and

(b) the coefficient of variations are linearly proportional. (c) Coefficient of variation and (d)

skewness of cell division time distribution with χ = χα/χc. The symbols are obtained from

several experimental data and the green dots are obtained from the theory (Eq. 4). The value of

the parameters µα, χα, and χc are chosen randomly from the uniform distribution, respectively,

U[0.003,0.2], U[0.03,0.45], and U[0.08,0.25], which span the broad range of experimental data. The green

line is the green dots’ mean plot, and the green shaded region is the error across the mean line.

Another way to test our theory is to examine the relations between moments of division

times and parameters of the model. Fig. 3 shows these relations as estimated from the

data (colored symbols), together with the theoretical prediction of our model (solid lines).

First, we note that empirically the mean division time is governed by the mean inverse

accumulation rate (Fig. 3a). The solid line is very close to µT = ln 2/µα (dashed line), which

is the hallmark of the exponential threshold-crossing model. A more refined calculation

shows that in the presence of threshold fluctuations our model predicts µT ≈ ln 2(1+χα)/µα,
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providing a small deviation from the deterministic limit (Appendix B). This theoretical

finding also agrees well with experimental data, as plotted in Fig. 6 of Appendix B.

Moving to the second moment, our model predicts that the CV of division times increases

with CV of accumulation rates (Fig. 3b) and with CV of the threshold fluctuations (Fig.

3c). In each of these panels, the parameter not presented – χc in b and χα in c – take on a

range of values. The solid line shows the prediction of the model using the average of this

parameter, whereas the light shaded region depicts the margins obtained for the range of

different hidden parameters. Dark green points show the result of the theory for randomly

chosen values of the hidden parameters within the experimental range. Finally, the skewness

depends on the ratio between two CVs (Fig. 3d); as mentioned above, the distribution

interpolates Gaussian when χα < χc to heavy-tailed when χα > χc, a property reflected

by the increase in skewness. These results, again without fitting parameters, indicate that

the exponential threshold-crossing model captures correctly the dependence of division time

moments on the parameters of the accumulation rate and threshold fluctuations.

Discussion

Cell division time, i.e., the time between consecutive divisions, is an important pheno-

type that has been of interest in studies since the early 20th century. In the last decade,

as large samples of quantitative measurements became available, interest was renewed in

bacterial growth and division at the single cell level; the statistical properties of division

times provide important information for the understanding of these processes. In this work,

we theoretically analyzed the cell-division time statistics of an exponentially accumulating

cellular component by considering division as a threshold crossing problem, i.e., a cell will

divide when this component crosses a threshold copy number. This model, with the compo-

nent being a divisome protein that needs to accumulate in order to carry out division, was

shown to be consistent with single-cell data in several recent publications, describing both

steady-state (11) and transient (12) growth. A new ingredient in our model, not considered

in previous work, is the variability in exponential accumulation rates between consecutive

cycles in the same cell. Such variability is observed, to different degrees, in multiple data-

sets (see Fig. 2) and should therefore be accounted for. Indeed, our results show that

the statistical properties of accumulation rates are major predictors of the division time

statistics. We provide an analytical calculation of division time distribution for symmetric

division and stochastic accumulation rate and threshold, which agrees with a large number

of experimental data sets.

We find that cell-division time statistics are determined by three model parameters. The

mean accumulation rate (µα) sets the scale of division times; its CV (χα), and the CV

of the stochastic threshold (χc), determine the distribution shape. In agreement with the
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exponential threshold crossing model, the mean division time measured across a large set

of single-cell measurements is determined by the mean accumulation rate: To very high

precision (Fig. 3a), µT = ln 2/µα, reflecting the average fold-growth of 2 that balances

symmetric division. The CV of division time in these experiments is strongly correlated

with the CVs of the two random component, that of growth rate: χT ∼ χα (Fig. 3b), and

that of threshold χT ∼ χc (Fig. 3c), in excellent agreement with theory.

Our model predicts also the full distribution of division times: this is found to be of

non-universal shape, that depends primarily on the ratio between the two CVs, χα and

χc. If χα ≪ χc then the distribution is Gaussian, while in the other limit χα ≫ χc it is

the reciprocal of the Gaussian distribution, which has a heavy power-law tail ∼ T−2. In

between our general solution interpolates between these behaviors. Although experimental

data do not lie in these extremes, they nevertheless span a broad enough range of χ = χα/χc

to exhibit both types of distribution in good agreement with the theory. This prediction

is reflected also in the increase of division time skewness with the ratio χ, also in good

agreement with the data (Fig. 3d).

The range of division time distributions is revealed when considering different levels of

variability in accumulation rates. Previous work has argued for Gaussian-like division time

distributions that collapse by scaling (24, 28, 29), and can be reconstructed by models with

deterministic exponential accumulation rates (25, 39). While this framework holds for some

bacterial data-sets, others exhibit a much broader variability in accumulation rates (11, 18–

20, 37). Our analysis suggests that different experiments, possibly due to slightly different

conditions or culture details, span a range of behaviors from highly uniform to highly varying

accumulation rates. The success of our model to describe this range of behaviors indicates

that exponential threshold-crossing captures a fundamental principle of cell division common

to all these conditions. In future work it will be interesting to test this model further in other

microorganisms. More generally, it remains an open question whether the same principles

found here for bacteria apply to cell division in higher organisms.

A common heuristic approach for distinguishing candidate control strategies is to examine

correlation plots, and compare them to the prediction of several candidate models. Until

now, these models have assumed negligible variability in exponential accumulation rates

and fixed thresholds. The empirical plot of a variable added over the cell cycles, as a

function of its initial value at cycle start, has served as a common such critirion (6, 28, 39).

Specifically it is reasoned that in threshold control, smaller initial values would result in

larger added values to reach the same threshold, thus inducing a negative correlation in

the empirical plot. However, this categorization breaks down when threshold dynamics are

taken into account. It was recently shown that the same control mechanism – an exponential

threshold-crossing process with a fixed exponent – can produce different empirical slopes,
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depending on the threshold correlation time (27). This result is reproduced both analytically

and numerically in Appendix C, showing that the correlation between added protein or cell

size ∆n and its initial value n(0), changes from a positive to zero to a negative correlation,

as the ratio between cell division time and threshold correlation time (Fig. 7a). We extend

this calculation to a model with variable accumulation rate in Fig. 7c, and find that the

same phenomenon occurs. This highlights the caution that needs to be exercised when

reverse-engineering correlation plots by a limited set of alternative simple models.

Another important correlation is that of division time with initial values. This is expected

to be negative for a threshold-crossing process regardless of the source of noise (see Appendix

C). Indeed, Fig. 7c,d show that with or without variability of accumulation rate, the

empirical slope is negative. Nevertheless, the presence of rate variability has an effect on the

correlation plot: it renders the negative slope insensitive to the correlation time. We have

seen that also the distribution shape looses its sensitivity to threshold correlation time in the

presence of accumulation rate variability (see Appendix D, Fig. 8d,e). These results provide

some intuition as to why the statistics of division times are well predicted by a relatively

simple model with the main input being statistics of accumulation rates.

An intriguing finding that emerges when comparing our theory to single-cell data, is

that division time statistics can be equally well predicted from protein accumulation mea-

surements of various proteins (not necessarily divisome proteins), or even from cell-length

measurements. Fig. 5 compares the data with the two predicting curves. This may seem

surprising at first, but can be understood once we recall the strong correlations between

accumulation rates of different highly expressed proteins and cell size across cycles (18–20).

A related phenomenon arises in (12), where dynamics of an arbitrary measured protein was

used as a proxy for divisiome proteins and was useful in explaining transition between growth

media. This behavior, where the dynamics of a multi-dimensional system can be reduced

to one or a few variables, is a hallmark of balanced growth, which in turn characterizes

strong interactions and dynamic coupling among system components. Previous models have

pointed to ribosomal proteins as providing the auto-catalytic component that indirectly in-

duces exponential-like accumulation of other proteins as well as cell size (19, 20, 40–42).

More generally, different interactions among cellular components can indirectly induce auto-

catalytic cycles that cause correlated exponential-like accumulation in multiple components

(24, 40). Further theoretical work is required to understand minimal model requirements

that account for variable but correlated dynamics across components (19).
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Appendix A: Calculation of division time with rate noise and stochastic threshold

In this work, we have applied the first passage problem (FPP) framework to analytically

solve the cell division time statistics of exponentially growing bacteria. Cells divide when

the copy number of a specific divisome proteins n(t) reaches the fluctuating threshold, c(t)

for the first time. Thus cell division is equivalent to the FPP with the stochastic c(t) to a

shifting absorbing boundary at n(t). If G(c(t), t|c(t0), t0) is the probability density of c(t)

conditioned by known c(t0), then the survival probability that the cell has not divided till

time t can be expressed as

S(t|c(t0), t0) =
∫ ∞

n(t)

G(c(t), t|c(t0), t0)dc, (A1)

which relates to the probability density of first passage time as below

F (t|c(t0), t0) = −∂S(t|c(t0), t0)
∂t

. (A2)

Thus, the distribution of cell division time follows P (T ) = F (t = T+t0). If the threshold c(t)

follows the OU process (Eq. 3) then the probability, G(c̃, t|c̃′, t′), with normalised variable

c̃ = c/µc − 1, can be given as a Gaussian distribution (t > t′) (35)

G(c̃, t|c̃′, t′) =

√
1

2πχ2
c(1− e2γ(t−t′))

exp

[
− (c̃− c̃′e2γ(t−t′))2

2χ2
c(1− e2γ(t−t′))

]
, (A3)

where χc is the CV of threshold with χ2
c = σ2

c/µ
2
c = D/γµ2

c . For symmetric division and

fixed accumulation rate, Eq.(A1)-Eq.(A3) lead to the cell division time distribution for

exponentially growing cell, n(t) = µc

2
eα(t−t′) as (27)

P (T |α) = γ(1− e−2γT )−3/2√
2πχ2

c

(
α

2γ
eαT (1− e−2γT ) + e−2γT

(
1− 1

2
eαT

))
exp

[
−

(
1− 1

2
eαT

)2
2χ2

c(1− e−2γT )

]
.

(A4)

In the limit τc ≪ T , i.e., γT ≫ 1 then the cell division time distribution in Eq. (A4) will be

P (T |α) = αeαT

2
√

2πχ2
c

exp

[
− 1

2χ2
c

(
1− 1

2
eαT

)2
]
. (A5)

Now, to incorporate the fluctuations in the accumulation rate we have to multiply the

probability distribution function of α, P (α) with Eq. (A5) and integrate over α:

P (T ) =

∫ ∞

0

P (T |α)P (α)dα. (A6)
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The distribution of exponential accumulation rate α follows Gaussian as shown in Fig. 1c,

which is obtained from the single cell experimental date of E. coli (18).

P (α) =
1√
2πσ2

α

exp

(
−(α− µα)

2

2σ2
α

)
. (A7)

But, one of the α dependent terms inside the integrand is, exp
[
− 1

2χ2
c

(
1− 1

2
eαT

)2]
, which

is not exactly integrable. So, we do the Taylor expansion of the exponent around the

maximum value of α (= ln 2/T ) and neglect higher order terms O((αT )3/χ2
c). Using this

approximation, Eq. (A5) turns into the following form:

P (T |α) = αeαT

2
√

2πχ2
c

exp

[
− 1

2χ2
c

(αT − ln 2)2
]
=

αeχ
2
c/2√

2πχ2
c

exp

[
−(αT − ln 2− χ2

c)
2

2χ2
c

]
. (A8)

This approximation renders the probability density in Eq. (A8) unnormalization, with an

additional term eχ
2
c/2, which is very close to 1 as χ2

c ≪ 1. Approximating eχ
2
c/2 ≈ 1 restores

normalization and we have a Gaussian

P (T |α) = α√
2πχ2

c

exp

[
−(αT − ln 2− χ2

c)
2

2χ2
c

]
. (A9)

Inserting Eqs. (A7) and (A9) into Eq. (A6) we can obtain the cell division time distribution

P (T ) =
(µαχ

2
c + σ2

αT (χ
2
c + ln 2))√

2π(χ2
c + (σαT )2)3/2

exp

[
−(µαT − χ2

c − ln 2)2

2(χ2
c + (Tσα)2)

]
, (A10)

as described in Eq. (4). Furthermore, scaling the division time by Z = µαT gives the

distribution of the new scaled variable

P (Z) =
χ2
c + Zχ2

α(χ
2
c + ln 2)√

2π(χ2
c + (Zχα)2)3/2

exp

[
−(Z − χ2

C − ln 2)2

2(χ2
c + (Zχα)2)

]
, (A11)

which depends only on CVs, χα and χc. This result implies that µα is the scale variable,

and two CVs play a role as the shape parameter of division time distribution.
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FIG. 4. Comparison of theoretical division time distribution to single-cell data. Cell

division time distribution from different published experimental data (bar histograms): (a-d)(19),

(e) (18), (f) (37), (g-i) (11), (j-l) (29), (m-r) (28). The solid curves are obtained from our

theoretical model (Eq. 4), where the parameters, µα, σα, and χc are estimated directly from the

respective experimental data of cell length, which are also displayed in Fig. (3).
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FIG. 5. Division time is insensitive to cell length measurements or protein. Cell division

time distribution in Eq. 4 depends on three quantities, µα, σα, and χc, which can be estimated

either from protein data or from cell size data. We plot experimental division time distributions

(bar histogram) along with P (T ) (Eq. 4) for two input types; {µα, σα, χc}cell length (solid line) and

{µα, σα, χc}protein number (dash-dot line), estimated from the single cell experimental data of E. coli

(19, 20). The measured parameter values of cell length and protein data for both experiments are

exhibited in Fig. (3).
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Appendix B: Approximated calculation of mean division time with rate noise

In the presence of variability in the accumulation rate from one cycle to another and

stochastic threshold, we find an exact distribution of cell division time as presented in Eq.

(4). However, it is almost impossible to calculate an exact mathematical form of cell division

moments from this distribution. In the limit when χc > χα we obtain Gaussian distribution

(Eq. 6) with well defined mean, µT = (ln 2+χ2
c)/µα ≈ ln 2/µα, as χ

2
c ≪ 1. In the other limit,

χα > χc, there are no well-defined moments of division time distribution as it is reciprocal

of Gaussian (Eq. 5). However, we can do an approximated calculation of mean cell division

time using the reciprocal Gaussian distribution (Eq. 5) as below:

µT =
ln 2√
2πσα

∫
1

T
exp

[
−
(
ln 2
T

− µα

)2
2σ2

α

]
dT

=
ln 2√
2πσα

∫
1

Z
exp

[
−(Z − µα)

2

2σ2
α

]
dZ [change of variable Z = ln 2/T ≈ (µα ± σα)]

≈ ln 2

µα

(1 + χα)

[
1

Z
=

1

µα(1± χα)
≈ 1

µα

(1 + χα) ∵ χα < 1

]
, (B1)

which provides that the mean cell division time is proportional with the noise in accumulation

rate, χα, as observed from several single-cell experimental data (Fig. 6).

FIG. 6. Mean cell division time is proportional with CV of accumulation rate. Variation

of µTµα with χα, which exhibits positive correlation. The symbols are obtained from several

experimental data (11, 18–20, 28, 29, 36, 37), and green dots are obtained from the theory (Eq.

4), where µα, σα, and χc are chosen randomly from the uniform distribution within the range of

experimental values. The green line is the mean plot of the green dots and green shaded region is

the error across the mean line.
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Appendix C: Covariation of initial and added values

There have been extensive experimental studies and analyses on the dependence of the

added cell size ∆n and the division time T on the initial value n(0) of exponentially grow-

ing bacteria under different growth conditions. Here, we analyze joint variability among

these quantities in our model, namely in the presence of accumulation noise and threshold

dynamics.

The joint variability of two random variables can be measured by covariance, defined

as cov(X, Y ) = E(XY )-E(X)E(Y ), where E is the expectation (average) value. Following

this definition one can exactly calculate the cov(∆n, n(0)) in the case of symmetric division

(n(0) = c(0)/2) and n(T ) = c(T ), as bacterial cell division is a threshold crossing process.

Thus, cov(∆n, n(0)) will be given as following

Cn =
σ2
c

4

(
2e−γT − 1

)
, (C1)

by using the cov(c(T ), c(0)) = σ2
ce

−γT (32). From Eq. (C1), one can clearly understand that

the covariance between ∆n and n(0) does not depend on the accumulation rate α; however,

it can span from positive to negative depending on the value of threshold correlation time

τc = 1/γ (Fig. 7a, c). If τc ≫ T , then e−γT ≈ 1, which gives Cn > 0 (positive correlation);

on the other hand, if τc ≪ T , then e−γT ≈ 0 and Cn < 0 (negative correlation). Similarly,

τc ≈ T gives e−γT ≈ 0.5, which implies Cn ≈ 0 i.e., weak correlation.

Similarly, we can measure the joint variability among T and n(0) by calculating cov(T, n(0)),

which is not exactly analytically solvable. However, using a crude 1st order approximation

of ln c(T ) ≈ c(T ) − 1, we can roughly understand the relation between T and n(0). Using

this approximation the cov(T, n(0)) leads to

CT ≈ −σ2
c

2α
(1− e−γT ). (C2)

From the expression of CT (Eq. C2), it is clear that the cov(T, n(0)) is always negative

independent of the value of threshold correlation time τc; though, the value of |CT | will
decrease if we increase τc (Fig. 7b). However, unlike Cn, the slope CT does depend on

the accumulation rate α. Due to the limitations of approximated calculation, the analytical

form of CT is unable to explain why the noise in accumulation rate χα makes this correlation

almost insensitive to threshold correlation time (Fig. 7d).

For the numerical analysis we do the time evolution of cell size/protein number for kth

cell cycle, nk(t) = nk(0)e
αkt until nk(t) hits the threshold c(t). For the threshold dynamics

as presented in Eq. (3), we simultaneously do the Euler Maruyama simulation with time

interval 0.1 min. We record the time and cell size at the point when nk(t) crosses the
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threshold, which give, respectively, the cell division time and cell size at division. We

continue these steps for 104 realizations to get cell division time, and elongated cell size.

FIG. 7. The presence of accumulation rate variability renders the negative cov(T, n(0))

insensitive to the threshold correlation time. Variation of (a, c) ∆n and (b, d) cell division

time T with cell size at birth, n(0) for three different time scales of threshold. Here the plots are

obtained from the simulation with µα = 0.023 min−1, χc = 0.1, χα = 0 (a, b), χα = 0.3 (c, d),

and τc = 5 (< T ), 40(≈ T ), 200 (> T ) and the unit of time is min.
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Appendix D: Simulated and calculated P (T ) for different τc and χα with χc = 0.1

FIG. 8. Noise in accumulation rate makes the distribution insensitive to the threshold

correlation time. In the left panel, for constant accumulation rate (χα = 0), we plot (a) the

dynamics of protein number, threshold, and (b) cell division time distribution for τc = 200 min

(> T ) and τc = 2 min (< T ). In the right panel we do the same plots; (c) trajectories of threshold

and protein number for χα ̸= 0 and division time distribution for (d) χα = 0.06 (< χc) and (e) χα

= 0.4 (> χc). For (b) the solid lines are obtained from Eq. (A8), and Eq. (4) gives the solid lines

of (d), (e). Histograms are obtained from the simulation with χc = 0.1, and µα = 0.02 min−1.
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