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Quality of internal representation shapes learning performance in feedback neural networks
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A fundamental feature of complex biological systems is the ability to form feedback interactions with their
environment. A prominent model for studying such interactions is reservoir computing, where learning acts
on low-dimensional bottlenecks. Despite the simplicity of this learning scheme, the factors contributing to or
hindering the success of training in reservoir networks are in general not well understood. In this work, we study
nonlinear feedback networks trained to generate a sinusoidal signal, and analyze how learning performance
is shaped by the interplay between internal network dynamics and target properties. By performing exact
mathematical analysis of linearized networks, we predict that learning performance is maximized when the target
is characterized by an optimal, intermediate frequency which monotonically decreases with the strength of the
internal reservoir connectivity. At the optimal frequency, the reservoir representation of the target signal is high-
dimensional, desynchronized, and thus maximally robust to noise. We show that our predictions successfully
capture the qualitative behavior of performance in nonlinear networks. Moreover, we find that the relationship
between internal representations and performance can be further exploited in trained nonlinear networks to
explain behaviors which do not have a linear counterpart. Our results indicate that a major determinant of learning
success is the quality of the internal representation of the target, which in turn is shaped by an interplay between
parameters controlling the internal network and those defining the task.
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I. INTRODUCTION

A fundamental feature of the brain, and biological net-
works in general, is the ability to form closed-loop inter-
actions with their environment. Such interactions are often
implemented through a dimensionality bottleneck: while net-
works typically consist of large numbers of units, signals
exchanged with the environment are low-dimensional. In fact,
external stimuli can often be represented in terms of a few
scalar variables (e.g., the angle and speed of a tennis ball
approaching); these low-dimensional variables are encoded in
the high-dimensional activity of a large population of neurons
[1,2] before being again transformed into low-dimensional
decision variables and motor outputs (e.g., the angle and speed
of the hand holding the racket).
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Simple but effective models for studying closed-loop in-
teractions are feedback networks. These models implement a
simple form of closed-loop interaction: the output (or read-
out) signal, which is extracted from a reservoir of randomly
connected units as a linear combination of unit activities,
is directly injected back into the reservoir as external input
[3,4]. By adjusting the weights which specify how reservoir
activity is mapped to the output, feedback networks can be
trained to produce the desired readout signal. In the most com-
mon training algorithms [5–7], readout weights are updated
through least-squares (LS) regression; this can be performed
only once, by using a complete batch of activity samples [5],
or in an online fashion, by recursively integrating activity
samples as they are simulated [7,8].

What kind of closed-loop dynamics can feedback net-
works implement? Despite some theoretical advancement
[4,9–12], computational properties of feedback networks are
still poorly understood. Early theoretical work has indicated
that most feedback models are expected to be able to approx-
imate readout signals characterized by arbitrarily complex
dynamics [4]. However, it has been reported that not all
feedback architectures and target dynamics result in the same
performance: trained networks can experience dynamical in-
stabilities [10,11] and converge to fragile solutions for certain
choices of the feedback architecture and parameters [7,13].

For a fixed task, several studies have reported that training
performance is strongly influenced by the overall strength of
recurrent connections in the reservoir [6,7,14]. Specifically,
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performance is high when recurrent connections are strong,
but not strong enough to lead to the appearance of chaotic
activity [15]—a parameter region named edge-of-chaos [16].
Intuitively, the edge-of-chaos defines an optimal tradeoff point
where the internal reservoir dynamics are rich but stable.

Reservoir activity, however, is not determined by connec-
tivity alone: because the system is coupled to the environment,
activity depends also on the statistics and dynamics of the
target signal, which specify the task. How the internal reser-
voir dynamics interact with the target in determining trained
networks performance is a fundamental question in feedback
systems which is still not well understood [17]. In particular:
are there specific target features which optimize performance,
and how do they depend on internal properties of the reservoir
network? For given values of the target parameters, what are
the properties of reservoir activity that support optimal train-
ing? How sensitive is the optimal performance to the learning
algorithm? To the current date, these questions remain largely
unsolved.

In this work, we consider a simple setup consisting of
a nonlinear reservoir of rate units which is trained to sus-
tain a sinusoidal output with given frequency ω. Consistently
across three different training techniques, we find that learning
performance is maximized at a finite “preferred” frequency
ω̄, which in turn depends on reservoir connectivity: as the
connectivity strength is increased towards the edge of chaos,
ω̄ decreases towards zero. This nontrivial dependence of per-
formance, even in a simple task, provides a test case to study
the interplay between reservoir and target properties and its
effects on learning.

To gain analytical insight into this phenomenon, we con-
sider the case where reservoir dynamics are linearized, and
perform exact mathematical analysis. By averaging over the
ensemble of random reservoir networks, we characterize
reservoir activity in response to the target signal, and show
that a “resonance” frequency ω∗ emerges, which decreases
with the connectivity strength. Under this frequency, dimen-
sionality of neural activity is maximal and synchrony across
different units in the reservoir is minimal. When training the
network to output the target signal, feedback interactions are
most robust in the vicinity of the resonance frequency, thus
resulting in optimal performance. Moreover, this behavior is
predicted to be qualitatively consistent across different train-
ing algorithms, even if performance itself is sensitive to the
algorithm used. We show that our theoretical predictions cor-
rectly capture the qualitative behavior of learning performance
observed numerically in nonlinear network models. Overall,
our results shed light on the learning capacity of recurrent net-
work architectures by quantifying how learning performance
is determined by the interaction between internal reservoir
connectivity and target dynamics.

II. RESULTS

A. Emergence of a preferred frequency
in trained feedback networks

We consider a reservoir network consisting of N units
characterized by the evolution dynamics:

ẋ(t ) = −x(t ) + J�(x(t )) + mu(t ), (1)

where �(x) = tanh(x) is applied to the activation vector
x element-wise. Recurrent weights J are fixed, and are
drawn independently from the normalized Gaussian distri-
bution N (0, g2/N ) [7,15], so that the parameter g controls
the strength of reservoir connectivity. The one-dimensional
external signal u(t ) acts as a forcing on the reservoir through
input weights m, which are fixed and drawn as independent
standard Gaussian variables.

The output of the reservoir network is a one-dimensional
readout signal, defined as

z(t ) = n��(x(t )) (2)

through a set of decoding weights n that are assumed to be
plastic. The feedback is realized by using the output signal
as input: u(t ) = z(t ) [see Fig. 1(a) for an illustration], which
yields the final autonomous dynamics

ẋ(t ) = −x(t ) + (J + mn�)�(x(t )). (3)

During training, the vector n is updated until the output z(t )
best matches the desired target f (t ). The target function that
we consider is a simple sinusoidal wave of frequency ω, i.e.,
f (t ) = A cos(ωt ).

We trained multiple instances of this feedback architecture
and analyzed how performance depends on the frequency of
the target signal ω and on internal coupling strength g (Fig. 1).
Three common training algorithms (least-squares (LS) regres-
sion, ridge regression [18], and recursive least-squares (RLS)
[7,19]) were used (training details are reported in Appendix
A 1). We quantified the error as the mismatch between the
target f (t ) and the readout z(t ) averaged over a finite number
of target cycles in the posttraining activity.

We observe that, for fixed reservoir connectivity g, the
accuracy of signal reconstruction by the output strongly de-
pends on the target frequency: while training on one frequency
results in highly precise readout for many cycles, others result
in a runaway from the target signal [Fig. 1(b)]. For every
value of g, the error has a nonmonotonous dependence on ω,
and reaches a minimum at a finite frequency that we name ω̄

[Fig. 1(c)]. Each curve, corresponding to a different value of
g, has a different optimal frequency: specifically, ω̄ decreases
as the strength of reservoir connectivity g increases from zero
towards the edge-of-chaos [Fig. 1(d); see Appendix A 11 for
a characterization of the edge-of-chaos in our framework].
Although the exact value of the preferred frequency ω̄ is found
to be algorithm-dependent, the same qualitative behavior is
observed consistently across the three different algorithms we
used for training. It is also observed for both small and large
amplitudes of the target signal A, which drive reservoir activ-
ity in a regime where the saturation bounds of the nonlinear
activation function � play, respectively, a minor or a major
role.

The observations from Fig. 1 provide a striking example
of the nontrivial interplay between reservoir features (the con-
nectivity parameter g) and external task parameters (the target
frequency ω) in determining learning performance. Because
the network is completely random, it is not clear a priori
whether its dynamics would exhibit a preferred timescale, and
if so, what would determine this timescale. Our results indi-
cate that random reservoirs indeed have a preferred timescale,
and that this timescale is a function of the overall strength
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FIG. 1. Emergence of preferred frequency in nonlinear feedback networks trained to sustain a sinusoidal output. (a) Illustration of network
architecture used in open (yellow) and closed (purple) loop. (b) Example readout signal (dark gray; target shown in yellow) for three learning
trials corresponding to the frequency values indicated in green in panel (c) (ω = 0.1, 0.7, 2.1; g = 1). Other parameters as in (c), except (for
illustration purposes) training is performed on a smaller number of target cycles (N tot = 4 and N tr = 2; see Appendix A 1). LS regression was
used for training; examples trials for Ridge and RLS are reported in Fig. 8. (c) Readout error as a function of ω, for a range of g values (blue
shades), for networks trained via LS (left), ridge regression (middle), and RLS (right). We take A = 1. Training details and parameters are
reported in A 1. (d) Error-minimizing frequency ω̄ as a function of g, for the three learning algorithms as in panel (c). Three different target
amplitudes A were tested (gray shades).

of the random connectivity. In the rest of this paper, we aim
to understand this observation in detail through mathematical
analysis.

To this end, we consider a simplified model which greatly
eases the analysis: the case of linear reservoir dynamics
[�(x) = x]. The analysis strategy we use consists of two
steps [10]. To begin, we examine the feedback network in an
open-loop setup [Fig. 1(a), yellow], where the encoding of the
input and the decoding of the output signals can be analyzed

separately. In the encoding phase, we take the input to the
reservoir network to be identical to the target function: u(t ) =
f (t ), and characterize analytically the reservoir response x(t )
at both the level of single units and the population as a
whole (Sec. II B). In the decoding phase, we use the reservoir
response to pick a readout n which allows the network to
reconstruct the correct output: n�x(t ) = f (t ) (Sec. II C). At
that point, our network admits the desired target as a solu-
tion; to investigate success of such solutions in performing
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FIG. 2. Encoding of the target signal: geometry of activity trajectories. (a) Projection of one example trajectory x(t ) [Eq. (7)] on the plane
spanned by vectors v±. (b) Norm of the two vectors v± as a function of the target frequency ω. (c) Angle between the two spanning vectors v±.
In panels (a)–(c) we used g = 0.5. In panels (b) and (c) the black vertical line indicates the resonance frequency ω∗ where, respectively, the two
norms are equal (r = 1), and the angle is maximized. (d) Linear dimensionality: participation ratio computed from the principal components of
activity. We plot results for five increasing values of g (blue shades); black stars indicate the position of ω∗ for every value of g. (e) Resonance
frequency ω∗. In all panels, continuous lines indicate the analytical results. In panels (d) and (e), dots show the average over 20 simulations of
finite-size networks, N = 2000.

the task, in Sec. II D we close the loop [Fig. 1(a), purple],
and characterize stability of the dynamics. Taken together, the
open- and closed-loop descriptions fully characterize trained
feedback architectures, and thus allow us to make predic-
tions about dynamical mechanisms and training performance.
These predictions are shown to compare favorably to numeri-
cal simulations obtained by training linear feedback networks
in the presence of noise (Sec. II E). Finally, in Sec. II F we
show that they qualitatively carry over to the case of nonlinear
dynamics.

B. Open-loop setup: Encoding the target signal

We begin our analysis by examining encoding in the open-
loop framework: this corresponds to a random reservoir with
linear dynamics driven by the target signal. The time evolution
is described by

ẋ(t ) = −x(t ) + Jx(t ) + m f (t ); (4)

here J is a Gaussian random matrix as defined above; to
avoid dynamic instabilities, we consider g < 1 [20]. The linear
dynamics are indifferent to the amplitude of the input, so we

set A = 1; in response to the periodic input f (t ) = cos(ωt ),
the stationary solution for t → ∞ is

x(t ) = 1
2 (x+eiωt + x−e−iωt ), (5)

where

x± := [(1 ± iω)I − J]−1m (6)

are complex conjugate vectors representing the reservoir ac-
tivity in Fourier space (see Appendix A 2).

1. A geometric description

The stationary solution may be written as

x(t ) = v+cos(ωt ) + v−sin(ωt ), (7)

showing that activity occupies the plane spanned by two
vectors v±, which are the real and imaginary parts of x±:
R(x+) = v+ and I (x+) = −v−. In this plane, the state-space
trajectory is a closed, elliptic curve [Fig. 2(a)], with geometry
determined by the spanning vectors.

The spanning vectors v±, in turn, depend both on the recur-
rent connectivity J and on the driving frequency ω [Eq. (6)].
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Their geometry is self-averaging in the limit of large networks
and can be computed by averaging over the ensemble of
randomly connected reservoir networks (see Appendix A 3).
Figure 2(b) shows the dependence upon ω of the norms ‖v±‖.
For very small frequencies, the trajectory follows the drive
adiabatically and v− ≈ 0; there is practically only one span-
ning vector. As frequency increases, the response acquires
a phase shift and the second spanning vector v− becomes
non-negligible. At high frequencies, both norms decrease due
to the filtering property of the network; the second spanning
vector thus obtains a maximal norm at an intermediate fre-
quency.

We quantify the elliptical trajectory by its linear di-
mensionality, i.e., the participation ratio computed from the
principal components of reservoir activity [21,22]. Denoting
the activity cross-correlation matrix by C := 1

T

∫ T
0 x(t )x� dt ,

where T = 2π/ω, and its eigenvalues by νi, the trajectory
dimensionality d is defined as

d :=
(∑N

i=1 νi
)2

∑N
i=1 ν2

i

. (8)

By using Eq. (7), and by integrating out time, we find that C
is a rank-two matrix, C = 1

2 (v+v�
+ + v−v�

− ), whose nonzero
eigenvalues (which we take to be ν1, ν2) are identical to those
of the 2 × 2 reduced cross-correlation matrix [23]

CR =
( ‖v+‖2 v+ · v−

v+ · v− ‖v−‖2

)
. (9)

Explicitly computing the eigenvalues of CR yields the expres-
sion

d = (‖v+‖2 + ‖v−‖2)2

‖v+‖4 + 2(v+ · v−)2 + ‖v−‖4
. (10)

We observe that the linear dimensionality, which is bounded
between 1 and 2, is insensitive to the overall trajectory mag-
nitude, but depends on the ratio of norms r = ‖v−‖/‖v+‖ and
on the angle θ between the spanning vectors:

d = 1

1 − 2r2

(1+r2 )2 sin2(θ )
. (11)

The ratio r indicates how much the curve is squeezed along
a single direction, with both extremes (r very small or very
large) resulting in trajectories squeezed along the dominant
spanning vector. For a fixed angle, as the ratio passes through
r = 1, the trajectory goes through a shape which is most
similar to a circle and has maximal dimensionality. For a
fixed r, the angle θ determines to what degree the curve is
skewed relative to a perfect ellipse; the dimensionality in-
creases monotonically as θ opens up from zero to π/2.

Examination of the vector norms ‖v±‖ in Fig. 2(b) indi-
cates that they intersect at a frequency value that we name
ω∗, where r = 1. Figure 2(c) shows how the angle θ varies
as a function of frequency; notably, we find that it displays a
maximum at ω∗. These dependencies are reflected in the be-
havior of the dimensionality [Fig. 2(d)], which itself attains a
maximum at frequency ω∗. Our mathematical analysis reveals
that (see Appendix A 4)

ω∗ =
√

1 − g2, (12)

i.e., the resonance frequency ω∗ decreases to zero as g in-
creases towards the instability boundary (g = 1). This analytic
result is in excellent agreement with finite network simula-
tions, as shown in Fig. 2(e).

2. A single-unit description

The analysis above considered the geometry of trajectories
spanned by the reservoir population in its high-dimensional
activity space and revealed that trajectory dimensionality is
maximized at the resonance frequency ω∗. An alternative
viewpoint is obtained by considering the statistics of single-
unit activity profiles across the population. As we shall see,
this alternative perspective reveals that the optimal frequency
ω∗ has a second natural interpretation in terms of population
synchrony.

We first derive a self-consistent expression for x+ by in-
serting Eq. (5) into the evolution equations [Eq. (4)]:

x+ = 1

1 + iω
(m + Jx+). (13)

This form highlights that vector x+ is given by the sum of
two contributions: one associated with the external forcing
via the input vector m, and one associated with the reservoir
response via the recurrent input Jx+. Since J is random, the
direction of the latter contribution is random (i.e., it varies
across realizations of J), but its amplitude is self-averaging
and depends on the strength of recurrent connectivity g [15].

We use Eq. (13) to gain intuition about how the network
encodes the external oscillatory signal at the level of single-
unit activity. To this end, we visualize the entries of the x+
vector as points in the complex plane: (x+)i = Rieiφi , where
Ri and φi represent the amplitude and phase with which a
single unit responds to the forcing input [Fig. 3(a)]. How
are points corresponding to different units distributed on the
complex plane? When recurrent connections are very weak
(g � 0), different units behave as uncoupled filters with the
same filtering timescale; we have x+ � m/(1 + iω), implying
that the real and imaginary part of (x+)i for different i are
proportional one to each other. As a consequence, points on
the complex plane are collinear [Fig. 3(a) left], and phases are
identical: φi = φ. Responses of different units are thus syn-
chronized [Fig. 3(b) left]. As g grows from 0, the second term
in Eq. (13), which originates from recurrent interactions, starts
spreading the real and imaginary parts of (x+)i away from
the line φi = φ [Fig. 3(a) right], and introduces variability in
response phases [Fig. 3(b) right].

For fixed values of g and ω, the distribution of points
on the complex plane is a bivariate Gaussian [Fig. 3(a)]; a
narrow distribution corresponds to highly synchronized units,
and its broadening at stronger coupling indicates their desyn-
chronization. As both m and J are generated from a centered
Gaussian distribution, the mean of the distribution vanishes.
The covariance is given by

1

N

( ‖v+‖2 −v+ · v−
−v+ · v− ‖v−‖2

)
(14)

implying that the distribution shape is controlled by the
statistics of the spanning vectors v+ and v−. The similarity be-
tween the covariance matrix and the reduced cross-correlation
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FIG. 3. Encoding of the target signal: single-unit description. (a) Entries of vector x+ in the complex plane. Left: g = 0.1, right: g = 0.5;
ω = 0.6 for both plots. Continuous lines are contours of the bivariate Gaussian distribution predicted by the theory. The outermost contour
indicates a probability of 0.01. Gray points are results of a finite network simulation (N = 400). (b) Sample of activity from four randomly
selected units chosen from the corresponding plot in panel (a). (c) Spread of response phases across the population [Eq. (15)] for increasing
values of g and as a function of ω. Black stars indicate the maximum value. (d) Value of the frequency which maximizes the spread of phases
from panel (c).

matrix CR [Eq. (9)] that appeared in the previous para-
graph suggests that synchrony in single-unit response and
dimensionality of state-space trajectories are deeply related
properties of reservoir activity. To formalize this relationship,
we compute the spread of phases φi across the reservoir
population,

�2 =
∫ φ̄+ π

2

φ̄− π
2

dφ p(φ)(φ − φ̄)2, (15)

where p(φ) is the probability distribution of phases for a
bivariate Gaussian distribution [24] (see Appendix A 5). The
phase spread for different values of recurrent strength g and
frequency ω is plotted in Fig. 3(c). These results show that
it monotonically increases with g; for any fixed g, it reaches
a maximum at a finite frequency value, given again by ω∗ =√

1 − g2 [Fig. 3(d)].
To conclude, we have examined the behavior of single-unit

activity in response to a sinusoidal forcing input. In line with
classical mean-field studies, we have analyzed the statistical
distribution of single-unit activity profiles across the reservoir
population [9,15,25]. This approach has revealed that, for
fixed g, ω∗ corresponds to the frequency at which single-unit
activity is maximally desynchronized. Note that historically,

desynchronized single-unit profiles have been pointed out as
a desirable feature of reservoir activity, as temporally hetero-
geneous profiles form a rich set of basis functions from which
complex target functions can be reconstructed [26].

C. Open-loop setup: Decoding the internal representation

After having characterized the reservoir activity during
stimulus encoding, we turn to the decoding step of the open-
loop analysis. Decoding corresponds to finding a readout
vector n ∈ RN which satisfies

z(t ) = n�x(t ) = cos(ωt ); (16)

the projection of driven reservoir activity along n thus needs to
match the target f (t ) [Fig. 4(a)]. In terms of the Fourier-space
representation [Eq. (5)], n is a solution to the set of two linear
equations given by

n�x± = n�[(1 ± iω)I − J]−1m = 1. (17)

When g = 0, interactions vanish and the equations above
read n�m = 1 ± iω, which cannot be satisfied by any n. In
order to develop some intuition, note that this case corre-
sponds to the reservoir network spanning one-dimensional
state-space trajectories (Fig. 2) or, equivalently, to single-unit
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FIG. 4. Closing the loop. (a) Transforming the open-loop encoding/decoding setup (yellow) into a closed-loop system (purple). (b) Sample
networks trained through full LS (from-N, left) or from-2 (right) regression. The top panels show the eigenspectra of the closed-loop
connectivity matrix J̄ (red dots); small black dots indicate the unperturbed eigenspectrum of J. The bottom panels show the output generated
by the corresponding networks. Here we used parameters g = 0.8, ω = 0.6, and N = 400. (c) Overlap between readout n and the principal
components (PCs) of driven reservoir activity [Eq. (7)], of which the first two span the v± plane. The same parameters as in (b) were used.
(d) Fraction of unstable closed-loop systems (over 2000 sample networks) as a function of connectivity strength g, for several values of k,
measured over 1000 different realizations. We used N = 1000 and ω = 0.6.

activity being completely synchronized (Fig. 3). Because of
the leak term in the network dynamics [Eq. (1)], single-unit
responses are never in phase with the target signal; since units
are synchronized, the target signal cannot be reconstructed.

For any g > 0, on the other hand, the system of equations
in Eq. (17) admits solutions; specifically, the system is under-
determined, since it fixes only two among the N degrees of
freedom in n. This regime corresponds to higher-dimensional
state-space trajectories (Fig. 2) or, equivalently, to single-unit
activity being desynchronized (Fig. 3), where the level of
asynchrony is quantified by the phase spread [Eq. (15)]. As
the system to be solved consists of only two equations, two
asynchronous single-unit activity traces are in fact sufficient to
solve the equations, and therefore in principle, to reconstruct
the target signal.

How many reservoir units should one use for the recon-
struction? We investigate this question by defining a family
of readout vectors n parametrized by an integer k, where
k = 2, . . . , N ; k indicates the number of reservoir units from
which the readout signal is reconstructed. We term such solu-
tions from-k regression. To obtain such a solution, we set all
elements except for the first k of n to zero, and then solve
Eq. (17) by considering the least-squares (LS) solution of

minimal norm, which can be computed through the pseudo-
inverse (see A 6). When k = N , we obtain the full LS solution,
which reads

nLS = (x+ x−)

( ‖x+‖2 x+ · x−
x+ · x− ‖x−‖2

)−1(1

1

)
(18)

or, in terms of v± vectors,

nLS = (v+ v−)P

(
1

0

)
, (19)

where we defined the short-hand notation P = (CR)−1.
All the readouts within the from-k family exactly solve the

task in the open-loop setup. However, it is not clear a priori
whether all of them are equivalent when closing the loop,
i.e., when the feedback network is required to autonomously
generate the target signal [Eq. (3)]. In the following, we assess
dynamics and stability of closed-loop networks corresponding
to the different choices of the readout n.
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D. Closing the loop: Autonomous signal generation

In the previous two sections, we have analyzed how ran-
dom networks encode a one-dimensional periodic signal, and
how the network response can be used to reconstruct the same
signal as output. Ultimately, we want the encoding and the
decoding steps to be self-consistent, i.e., we require

z(t ) = n�x(t ) = u(t ), (20)

which is equivalent to transforming our problem from an
open-loop to a closed-loop setup, where dynamics are au-
tonomous and follow Eq. (3) with linear interactions:

ẋ(t ) = −x(t ) + (J + mn�)x(t ) (21)

and n satisfies the readout condition (16). Closing the loop
is illustrated in Fig. 4(a) by the purple feedback arrow con-
necting the reservoir output to the input. If closing the loop
does not destabilize reservoir activity, then at every time point
the readout n�x(t ) = cos(ωt ) is fed back into the system,
and the solution obtained through the open-loop setup is self-
consistent.

The solutions to Eq. (21) and their stability are fully char-
acterized by the eigenspectrum of J̄ = J + mn� (the leak
term in the dynamics contributes by uniformly shifting the
spectrum by −1). For N sufficiently large, the eigenvalues
of J are distributed uniformly in a disk of radius g < 1 [20].
The position of some or all of the eigenvalues can, however,
be modified by the rank-one perturbation mn�; we refer to
these as outliers. In order for the closed-loop system to stably
sustain the periodic activity we found in the encoding step, the
eigenspectrum of J̄ must satisfy two key requirements: (1) a
pair of complex outlier eigenvalues with value: λ± = 1 ± iω
(which ensures that a periodic trajectory of frequency ω is
realized), and (2) a stable bulk of remaining eigenvalues:
R(λ) < 1 ∀λ �= λ± (which ensures that no runaway activity
is generated along other directions).

All eigenvalues of J̄ are roots of the characteristic polyno-
mial

det((J + mn�) − λI) = 0. (22)

The Matrix Determinant Lemma [12,13] allows us to decom-
pose this polynomial into two factors, corresponding to the
two sets of eigenvalues:

det(1 + n�(J − λI)−1m) det (J − λI) = 0. (23)

It is seen that the second term vanishes on the spectrum of J,
whereas the first term vanishes for the outlier eigenvalues. The
outliers therefore satisfy

1 = n�(λI − J)−1m. (24)

If n satisfies the readout condition Eq. (16), then λ± = 1 ± iω
are indeed solutions, implying that condition (1) is satisfied.
Note that the eigenvectors corresponding to λ± are identical
to the vectors x±, as (J + mn�)u± = λ±u± implies

u± ∝ (J − λ±I)−1m. (25)

Thus fixing n in the open-loop framework is equivalent to di-
rectly controlling the value of the target-relevant eigenvalues
in the eigenspectrum of the closed-loop network.

We next examine whether this pair of eigenvalues are the
only outliers generated by closing the loop: while Eq. (24) is
guaranteed to have λ± = 1 ± iω as solutions, other solutions
might be admitted which could violate requirement (2). Such
potential solutions depend on the overlap between the vec-
tors n and xλ = (λI − J)−1m. Note that if the readout n was
random (and thus orthogonal to J and m), this overlap would
vanish and no additional outliers would be generated.

In the case of the full LS solution [k = N , Eqs. (18) and
(19)], the readout vector nLS is contained in the plane spanned
by vectors v±. As a consequence, the overlap between n and
xλ can be expanded in terms of x�

±xλ. In the limit N → ∞,
these terms have a simple form which can be evaluated ana-
lytically (see Appendix A 8), yielding an equation in λ which
reads

(1 + ω2)λ2 − [2g2 + N (P11 + ωP21)]λ + g4 + Ng2P11 = 0,

(26)

where P11 and P21 are the elements of the first column of
P = (CR)−1 and depend on g and ω. As the equation above
is quadratic, it admits λ = λ± as unique solutions. Therefore,
in large networks, LS training is guaranteed to result in stable
dynamics, as no additional outliers are generated in the eigen-
spectrum other than the task-relevant ones. This is confirmed
by numerical simulation in the left panels of Fig. 4(b).

In the more general case of from-k LS regressors with k <

N , readout vectors might contain extra components that are
correlated with J and m and are not fully contained within
the spanning plane; as a consequence, more than two outlier
eigenvalues and unstable dynamics can be expected. The right
panels of Fig. 4(b) show an example of such a situation (in the
simulation, k = 2). One outlier eigenvalue with R(λ) > 1 is
seen in the top panel, which induces the dynamic instability
seen in the bottom panel.

As k decreases from the maximal value (N) to the minimal
one (2), the component of the readout vector n outside of
the v± plane becomes larger [Fig. 4(c)]. Numerical analysis
indicates that, correspondingly, the fraction of networks with
unstable dynamics increases [Fig. 4(d)].

In summary, we have shown that—although the open-loop
setup admits multiple exact solutions—different solutions are
not equivalent in terms of dynamical stability when the loop
is closed. Stability properties are related to the orientation of
the readout vector relative to the driven open-loop trajectory.
In the case of the full LS solution [Eq. (18)], the readout nLS

is completely aligned with the trajectory plane, and closed-
loop dynamics are guaranteed to be stable. Other solutions
generally contain components outside of this plane, which can
cause activity to diverge.

E. Predicting performance of trained linear networks

We now turn back to the problem of understanding perfor-
mance in trained feedback networks and its dependence on
the target frequency ω. We start by considering linear feed-
back networks which are trained [as in Fig. 1(c) left] via LS
regression. The analysis of the previous sections has shown
that linear networks trained via LS regression can exactly
implement the feedback task with stable dynamics. Due to
noise, however, real-life LS regression never converges to this
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ideal solution. Noise arises in training from multiple sources,
such as finite sampling of training data, variability due to
different initial conditions or regularization noise. In order to
characterize training performance, we thus use our theoretical
framework to analyze the effect of noise on the dynamics of
feedback linear networks trained via LS regression.

Consider first the encoding phase of learning (Sec. II B),
where reservoir activity is stimulated. Because of noise, learn-
ing algorithms may not have access to the true spanning
vectors v±. Rather, we assume that corrupted versions ṽ± =
v± + ξ± (where the entries of ξ± are independent Gaussian
noise) are measured. The estimated LS readout then reads

ñLS = (v+ v−)P̃

(
1
0

)
+ (ξ+ ξ−)P̃

(
1
0

)
, (27)

where P̃ is the inverse of the reduced cross-correlation matrix
which includes the noise disturbance.

As in Sec. II D, we can characterize closed-loop dynamics
by computing the outlier eigenvalues of J + m ñ�

LS. The sec-
ond term in the rhs of Eq. (27) is random and orthogonal to
m and J, and therefore does not affect the position of outlier
eigenvalues. In contrast, the first term is a vector fully aligned
with the noise-free spanning vectors v±, which generates two
outlier eigenvalues λ̃±. Because of the noise, their values
deviate from the target eigenvalues λ±; they are solutions
of an equation identical to Eq. (26), but with P replaced by
P̃. For every noise realization, the reduced cross-correlation
matrix CR is perturbed in a random direction, yielding random
modifications to its inverse P and to the target eigenval-
ues λ±. For any invertible matrix (in this case, the reduced
cross-correlation matrix CR), the sensitivity of its inverse to
perturbations is measured by the condition number—namely,
the ratio between its largest and smallest eigenvalue [17,27].
We thus estimate the average mismatch between λ̃± and λ±
by the condition number

c = ν1

ν2
, (28)

where ν1 and ν2 are respectively the largest and smallest
eigenvalue of CR.

The value of c and its dependence on ω and g can be
computed by taking the limit N → ∞ and averaging over
the network ensemble. Figure 5(a) shows that, for fixed con-
nectivity strength g, the condition number is a nonmonotonic
function of the forcing frequency ω, and attains a minimum at
the resonance frequency ω∗ =

√
1 − g2 (see Appendix A 9).

Thus, when training linear feedback networks through noisy
LS regression we expect that, for fixed g, the readout would be
closest to the desired one at ω̄ = ω∗, where the reduced cross-
correlation matrix is most robust to noise. This robustness
directly reflects the properties of the internal representation of
the target signal within the reservoir, which is characterized
by maximal dimensionality and minimal synchrony across
network units, occurring at ω = ω∗.

We tested this prediction on finite-size trained networks.
Examples from Fig. 5(b) confirm that the task-related eigen-
value pair λ̃± deviate from the target ones. As in the case
of nonlinear networks [Figs. 1(b) and 1(c)], we find that the
error is frequency dependent [Fig. 5(c), left]; furthermore, for
fixed strength of the internal connectivity g, we observe that

the error is minimized at a frequency ω̄ which is very close to
ω∗ [Fig. 5(d), left].

As a second way to characterize performance, like in
Fig. 1, we considered feedback networks trained via Ridge re-
gression [18]. In this case, the readout vector is deterministic;
in Fourier space, it can be expressed as (see Appendix A 10)

ñR = (v+ v−)P̃

(
1

0

)
, (29)

where P̃ = (CR + Nσ 2I)−1 and I is the 2 × 2 identity matrix.
As in the case of noisy LS regression, also this readout
vector generates only two outlier eigenvalues λ̃±, whose
values can be again computed through Eq. (26); in this case a
closed-form expression can be computed (Appendix A 10).

For moderate values of the regularization parameter σ , the
resulting λ̃± are complex conjugates that deviate somewhat
from λ± (see Fig. 10 for the full bifurcation diagram). Specif-
ically, their real part is always smaller than 1, implying that
the resulting autonomous dynamics are always stable (see
Appendix A 10). The amplitude of the mismatch between the
real and the imaginary parts of λ̃± and the target eigenvalues
λ± depends on both g and ω (see Appendix A 10), and is min-
imized at a finite frequency ω̄ which monotonically decreases
with increasing g [Fig. 5(d) center, solid lines]. Importantly,
the value of ω̄ is predicted to behave similarly (although not
identically) to ω∗. Figure 5(d) (middle) shows an excellent
match between these predictions and simulation results.

As a third and final test of performance, we considered
linear networks trained via the RLS algorithm [7,19]. In this
case, an analytical description of the closed-loop spectrum and
resulting dynamics is much harder to obtain; we thus com-
puted the value of the preferred frequency ω̄ from simulations.
We found that the mismatch between λ̃± and λ± displays
a strong, nonmonotonic dependence on the target frequency
[Fig. 5(c), right]; the preferred frequency ω̄ is, again, quite
close to ω∗ [Fig. 5(d), right].

To conclude, we analyzed performance in linear feedback
networks. Similar to nonlinear networks (Fig. 1), we found
that performance is maximized for a preferred frequency ω̄

which decreases with the connectivity strength g. Analyzing
how the simple LS readout solution interacts with noise,
we predicted that the preferred frequency ω̄ will lay close
to ω∗, the resonance frequency where encoding dynamics
has maximal dimensionality and is minimally synchronized.
This prediction is exactly verified in networks trained via
LS regression, but also carries over in a qualitative fashion
to networks trained via different training algorithms. In fact,
we showed that different algorithms are affected by different
kinds of biases, shifting the value of the preferred frequency
ω̄ away from ω∗ without changing the overall qualitative
behavior of performance.

F. Internal representation in nonlinear networks

We finally turn back to the original problem of analyzing
training performance in nonlinear feedback networks (Fig. 1).
Our analysis of linear networks revealed that a key feature
which determines training performance is the quality of rep-
resentation of the target signal within the reservoir. This
representation can be characterized by its dimensionality or,
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FIG. 5. Training performance in linear networks is maximized at ω∗. (a) Condition number of the reduced cross-correlation matrix CR

computed analytically for different values of g [blue shades in panel (c)]. Stars denote minimal condition number. (b) Closed-loop outlier
eigenvalues λ̃± for example networks from three learning trials corresponding to the frequencies marked by green triangles in (c) (ω = 0.1,
0.4, 1.5; g = 0.9). (c) Spectrum error as a function of ω, for a range of g values (blue shades), for networks trained via noisy LS (left), ridge
regression (middle), and RLS (right). Error is measured from the imaginary part of outlier eigenvalues as |I(λ̃±) − I(λ±)|/ω, and similarly
for the real part; the spectrum error is an average of the two. Training details and parameters are reported in Appendix A 1. (d) Frequency ω̄

minimizing the error in the real and imaginary part of λ̃± as a function of g, for the three training algorithms. Solid orange lines in the middle
panel show theoretical prediction for ridge regression (see Appendix A 10).

equivalently, by the synchrony of activity across units in the
reservoir.

Guided by these insights, we examined the properties of
open-loop dynamics [Eq. (1)] in nonlinear networks. Because
of the nonlinearity, the neural trajectory x(t ) is in this case not
planar, but curved along many dimensions [Fig. 6(a)]; most
of its variance, however, is still explained by two directions

[Fig. 6(b)]. We investigated numerically the properties of non-
linear target representations by using the same measures as for
linear networks, namely, the dimensionality and the spread
of phases across units. Although in nonlinear systems these
are not equivalent measures, we find that their behavior is
qualitatively similar to one another, and to the behavior of
their analogues in linear systems [Figs. 6(c) and 6(d), left].
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FIG. 6. Using open-loop reservoir dynamics to predict training performance in nonlinear networks. (a) Reservoir trajectories x(t ) in driven
nonlinear networks: example trajectory projected onto the first three PCs of network activity (note scale of PC3 axis). (b) Variance explained by
projecting trajectories on the first two PC axes (note scale of variance). (c) Using representation dimensionality to predict training performance.
Left: participation ratio of driven trajectory as a function of ω for a range of g values (blue shades). Results are averages over 20 simulations of
networks of size N = 2000, with A = 1. Center: resonance frequency ω∗, measured as the position of maximum dimensionality, as a function
of g for three different values of A (gray shades). Right: error-minimizing frequency ω̄ (from Fig. 1) plotted against ω∗ (from center panel).
Results are shown for three training algorithms (legend). (d) Using phase spread of driven trajectories to predict performance. Unit activities
xi(t ) were fitted with sinusoidal functions of the driving frequency ω, and the variance of the phase distribution was measured. Left, center,
and right panels are the same as in panel (c).

First, both measures increase monotonically with the connec-
tivity strength g. Second, for any fixed value of g, both mea-
sures display a maximum at an intermediate frequency ω∗.

In the middle panels of Figs. 6(c) and 6(d), we display
the resonance frequency ω∗ computed from both measures of
nonlinear representations (left panels) across various values
of g and for three target amplitudes (see legend). As in the
linear case, we find that the value of ω∗ decreases with the
connectivity strength g; unlike the linear case, however, it

depends on the target amplitude A. For small target amplitudes
(light gray), both measures of nonlinear representations yield
values of ω∗ which are quantitatively very close to the values
predicted by the linear theory, i.e.,

√
1 − g2 (yellow line). This

is expected, as for low-amplitude driving the reservoir activity
mostly remains in the vicinity of the origin, a region where the
nonlinear dynamics are approximately linear. In the nonlinear
case, however, as the target amplitude A increases (darker
shades of gray; see legend), the resonance frequency ω∗ also
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increases. The decrease of ω∗ with g is retained, but to a lesser
extent.

In the right panels of Figs. 6(c) and 6(d), we compare the
resonance frequency ω∗ predicted from analyzing nonlinear
representations to the preferred frequency ω̄ which minimizes
training performance (Fig. 1). Although the two quantities
do not exactly coincide, they display significant correlations.
Remarkably, the value of ω∗ correctly captures the behavior
of the preferred frequency ω̄ with the target amplitude A: like
ω∗, ω̄ increases with A, as can be seen by the clustering of
different shades of gray in Figs. 6(c) and 6(d), right panels.

Importantly, this observation is not sensitive to training
details. It is consistent across the three training algorithms we
used [Figs. 6(c) and 6(d), right panels] and across a broad
range of training hyper-parameters (Fig. 7). These results
suggest that the properties of the internal representation—
here measured by the dimensionality and synchronization of
the open-loop dynamics—play a crucial role in determining
training performance of nonlinear networks, as they do for
linear networks.

III. DISCUSSION

Ubiquitously across biology, complex high-dimensional
systems interact with their environment through low-
dimensional channels. The computational modeling of such
setups has advanced considerably in the past two decades
with the emergence of reservoir computing techniques [3,26],
where learning acts on such low-dimensional bottlenecks.
Despite the simplicity of this learning scheme, the factors
contributing to or hindering the success of training in reservoir
networks are in general not well understood [17]. In particular,
a theory is lacking for predicting—based on the characteristics
of the reservoir and the target function—dynamics and perfor-
mance of trained feedback networks.

In this work, we studied learning performance of feedback
networks trained to self-sustain a sinusoidal readout signal.
Through mathematical analysis, we showed that learning per-
formance is mostly controlled by the quality of the internal
representation of the target signal. This quality can be quanti-
fied by analyzing the open-loop dynamics and measuring the
condition number of their cross-correlation matrix, a number
that characterizes to what extent the network dynamics is
robust to training noise. We found that the condition number
displays, like training performance, a complex dependence
on the parameters controlling the reservoir internal proper-
ties (strength of reservoir connectivity g) and the readout
target function (frequency ω). In general it decreases with
the network coupling g; for every fixed g, the condition num-
ber is minimized at ω∗ =

√
1 − g2, defining an optimal spot

for learning. At this optimal point, internal representations
are characterized by maximal dimensionality and minimal
synchrony, which are two ways of quantifying the richness
of the dynamic repertoire available to the learning algorithm.
Our insights were derived by studying linearized dynamics
and were later tested on nonlinear networks, where they suc-
cessfully capture nontrivial aspects of training performance.

The condition number of the cross-correlation matrix has
been pointed out in several studies as a key quantity in deter-
mining performance [17,27]. Our work analytically quantifies

those empirical observations in the framework of networks
trained on a simple task via common LS-based algorithms.
We have shown, however, that performance might depend on
other features, such as closed-loop stability, for other nonstan-
dard algorithms (see Fig. 4).

Importantly, our analysis differentiates between two prop-
erties that might hinder network performance: high-norm
readouts (i.e., the fact that trained readout weights are char-
acterized by large norm) and non-normality (i.e., the fact that
the eigenvectors of the final closed-loop dynamics are not
orthogonal, but correlated with each other). In a number of
classic studies [7,12,17], large norms of the readout vector
have been associated with the need to fine-tune the connec-
tivity weights, which hints at low robustness to noise and
thus impaired performance. In addition, recent observations
indicate that training performance is low in parameter regions
where the open-loop dynamics is highly non-normal [13],
and link low performance to large readout vectors. In our
framework, the two properties can be analyzed separately.
Non-normality can be measured from the angle θ between
the two activity eigenvectors v±; Fig. 2(c) indicates that non-
normality is minimal at the resonance frequency ω∗. The norm
of the readout vector nLS can be instead derived from Eq. (16)
(see Appendix A 7); we show in Fig. 9 that, for every value of
connectivity g, the norm of the readout vector is monotonic in
the target frequency ω. We conclude that these two quantities
are not equivalent predictors of learning performance; in our
setting, training performance is optimal close to ω∗, so that
non-normality is identified as the dominating factor in con-
trolling performance.

Several studies have supported the hypothesis that learning
capability is maximized in the parameter region where dy-
namics is close to the boundary between ordered and chaotic
activity, i.e., the edge-of-chaos [6,7,14]. Our findings are con-
sistent with this hypothesis: we have seen that the condition
number (and, consequently, the training error) monotoni-
cally decreases as the strength of reservoir connectivity g
is increased from 0 towards its critical value. However, our
analysis has shown that, together with the strength of internal
connectivity, learning performance is crucially shaped by the
properties of the target function. By analyzing nonlinear net-
works, furthermore, we have found that the parameter region
characterized by maximally high-dimensional and desynchro-
nized internal representations does not necessarily coincide
with the edge-of-chaos; the two regions in fact diverge as the
target amplitude A is increased and activity becomes strongly
nonlinear (Figs. 6 and 11). Specifically, as A increases, the
critical frequency where activity becomes chaotic moves to
very high values [25] (Fig. 11), while the resonance frequency
ω∗ (which measures activity dimensionality and synchrony)
remains close to the training-preferred frequency ω̄ (Fig. 6).
This result suggests that future research should focus on char-
acterizing the properties of driven nonlinear activity rather
than analyzing the transition to chaos per se.

The numerical analysis of nonlinear networks (Fig. 6),
which was led by the insights gained from the linear theory,
suggests that representation quality is a major determinant of
closed-loop performance also in the case of nonlinear net-
works. Exploiting the link between the two, we were able
to predict the dependence of the preferred frequency ω̄ on
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both the internal connectivity g and the target amplitude A,
which plays no role in the linear counterpart. This is despite
the fact that the nonlinearity of the dynamics introduces, in
trained networks, new qualitative behaviors which do not exist
in linear networks. In particular, we observe that the training
error (and, consequently, the value of ω̄) strongly depends on
the hyper-parameters controlling the stability of the limit cycle
which constitutes the internal representation (see Appendix
A 1 and Fig. 8). In this respect, a more detailed analysis is
called for; we hope that future work would extend our analytic
framework to cover nonlinear reservoirs.

Finally, an interesting direction for future work would
be to use our approach to study periodic target signals that
are characterized by more than one frequency—e.g., a linear
superposition of two sinusoidal functions of different frequen-
cies. In that case, activity of linear networks in the open-loop
scenario would consist of the sum of two terms, each corre-
sponding to an ellipsoidal trajectory on a specific spanning
plane [Eq. (7)]. Our mathematical analysis (Appendix A 3)
indicates that spanning planes corresponding to different fre-
quencies will be correlated with each other, suggesting that
driven dynamics will be characterized by low dimensionality
and strong non-normal effects. This hypothesis seems to be
supported by results in Refs. [12,13], reporting that enforcing
closed-loop eigenspectra to include more than one pair of
complex outlier eigenvalues generally results in low perfor-
mance. Our analytical approach might be used in those cases
to uncover which target frequencies and which properties of
reservoir networks result in better performance.
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APPENDIX

1. Training of feedback networks

In the following, we report the procedures used to train
feedback architectures (Figs. 1 and 5). Procedures are detailed
for the general case of nonlinear networks; the case of linear
networks corresponds to taking �(x) = x. Results are aver-
ages across 1000 different network and training realizations.

a. LS regression training

Training is performed in the open-loop setup. In a first
phase, open-loop activity [where we enforce u(t ) = A cos(ωt )
in Eq. (1)] is simulated by using the Scipy odeint routine
from t = 0 to t = T tot, with T = N tot2π/ω. Activity is stored
in a L × N matrix �, where L indicates the number of time
points used for integration. The L-dimensional vector F is

constructed by computing the target function f (t ) at the same
time points. Activity and target function from t = 0 to T tr =
N tr2π/ω are later discarded, resulting in L′ × N and L′ × 1
matrices � and F, where L′ indicates the number of time
points kept after discarding the transient. We used N tot = 20
and N tr = 8. In order to regularize the cross-correlation matrix
and to ease local stability in nonlinear networks, white noise
is then added on top of activity: �̃ = � + σ LSξ, where ξ is
a L′ × N matrix of standard Gaussian variables. The trained
readout vector n is finally computed as

n = (�̃
�
�̃)−1�̃

�
F. (A1)

In linear networks, training performance is measured in
terms of the mismatch between the target outlier eigenvalues
λ± (see Sec. II D) and the outlier eigenvalues λ̃±, defined as
the pair of complex conjugate eigenvalues of J̄ = J + mn�
whose real part is maximally close to one. In nonlinear net-
works, performance is measured on closed-loop activity. To
this end, closed-loop dynamics [Eq. (3)] is simulated from
t = 0 to t = T tot. The initial condition is taken to be equal
to activity in the last time step of the open-loop simulation; on
top of it, an N-dimensional vector of white noise of amplitude
σ pertA is added. The latter perturbation was used to take into
account training error generated by unstable local dynamics;
we take σ pert = 0 in linear networks. To measure the test error
we fitted a sinusoidal function F (t ) of fixed amplitude A and
frequency ω to the readout signal z = n��� obtained in the
closed-loop simulation, yielding a novel L-dimensional vector
F. Readout error is finally measured as 〈 |zk − Fk| 〉k , where
the average is taken over all the integration time points from
t = 0 to t = T tot. If the fit fails, we set the readout error to
1. Parameters used in Fig. 1 are N = 400, σ LS = 0.01, and
σ pert = 0.1. Parameters used in Fig. 5 are N = 400, σ LS =
0.01, and σ pert = 0.

b. Ridge regression training

As in the LS case, training is performed in the open-loop
setup. The L′ × N open-loop activity � matrix is obtained as
above. The trained readout vector n is then computed as

n = (��� + (σ R)2I)−1��F, (A2)

where I indicates the N-dimensional identity matrix. Training
performance is measured as in the LS case. Parameters used
in Fig. 1 are N = 400, σ R = 1, and σ pert = 0.1. Parameters
used in Fig. 5 are N = 400, (σ R)2 = L′/2 σ 2, and σ pert = 0;
σ 2 = 10−7 is the regularization parameter used for regression
in the Fourier space (see Appendix A 10), which was used to
compute the theoretical prediction for outlier eigenvalues.

c. RLS training

Training is performed in the closed-loop setup, from t = 0
to t = T tot, with T = N tot2π/ω and N tot = 20 (Fig. 1) or
10 (Fig. 5). At t = 0, an N × N-dimensional matrix P is
initialized as: P = I/α, where I indicates the N-dimensional
identity matrix and α is a free parameter. Matrix P represents
a running estimate of the inverse of the activity cross-
correlation matrix [7]. Readout vector n is further initialized
with zero entries. At every learning step, closed-loop activity
is simulated from t0 to t0 + τ (Eq. (3)), with τ = (2π/ω)/500.

013176-13



LEE SUSMAN et al. PHYSICAL REVIEW RESEARCH 3, 013176 (2021)

Activity at t = t0 + τ is stored in an N-dimensional vector �.
Matrix P is then updated as [7]

P ← P − P���P

1 + ��P�
. (A3)

The readout vector n is then updated as

n ← n − eP�, (A4)

where the error e is measured as: e = z(t0 + τ ) − f (t0 + τ ).
Once training is completed, performance is measured as in the
LS case. Parameters used in Fig. 1 are N = 400, α = 1, and
σ pert = 0.1. Parameters used in Fig. 5 are N = 400, α = 1,
and σ pert = 0.

In Fig. 7, we show that the results presented in Fig. 1
generalize to different choices of hyper-parameters. Figure 8
further shows additional sample trials as in Fig. 1(b), here for
networks trained via Ridge or RLS.

We observe that in both Figs. 1 and 5 the LS and Ridge
algorithms result in a smaller error than RLS. This might
be due to the fact that the RLS algorithm runs online, and
thus in the initial phase of learning lacks access to a full
temporal batch of training points; rather, the target dynamics
are built progressively in time starting from samples of the
online reservoir dynamics. This makes the readout solution
highly sensitive to training initial conditions and transient
network dynamics. Note that online algorithms come with

the advantage of being able to avoid readout solutions that
correspond to local instabilities in the closed-loop dynamics
[7,11]. This advantage does not seem to play a role for the
current task, for which LS-based algorithms typically result
in stable dynamics (Fig. 4).

2. Analysis of linear open-loop reservoirs

For a general input f (t ), the system of linear equations
Eq. (4) admits the asymptotic solution (t → ∞)

x(t ) =
∫ t

0
e(J−I)(t−τ ) m f (τ ) dτ, (A5)

which for a complex exponential f (t ) = est for s ∈ C, simpli-
fies to

x(t ) = [(1 + s)I − J]−1mest . (A6)

In particular, for f (t ) = cos(ωt ) = 1
2 (eiωt + e−iωt ), one finds

the expression in Eq. (5). Note that x± defined in Eq. (5) cor-
respond to the amplitude of the peaks of the Fourier transform
of x(t ); indeed, we have

x̂(ω̂) =
∫ ∞

−∞
x(t )e−iω̂t dt = 1

2
[x+δ(ω̂ − ω) + x−δ(ω̂ + ω)].

(A7)

FIG. 7. Emergence of preferred frequency in nonlinear feedback networks, supplementary results obtained for different hyper-parameters.
(a) LS training. Parameters are as in Fig. 1, except σ pert = 0.01 (top) and σ LS = 0.001 (bottom). (b) Ridge training. Parameters are as in Fig. 1,
except σ pert = 0.01 (top) and σ R = 0.1 (bottom). (c) RLS training. Parameters are as in Fig. 1, except N tot = 10 (top and bottom), σ pert = 0.01
(top), and α = 5 (bottom). In the bottom row, we have removed from the plot the preferred frequencies ω̄ at low g values in the cases where
training fails (i.e., it is characterized by very high error) for every value of ω tested.
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FIG. 8. Emergence of preferred frequency in nonlinear feedback networks, example trials. Example trials as in Fig. 1(b) where training is
performed via Ridge regression (a) or RLS (b). Parameters are as in Fig. 1(b), except N tot = 3 in panel (b).

In deriving Eq. (7), we defined

v+ := 1

2
(x+ + x−),

v− := i

2
(x+ − x−). (A8)

3. Statistics of spanning vectors v+ and v−

In this section, we characterize the geometry of vectors v+
and v− in terms of their norms and overlap.

We start by evaluating the dot product:
[(

I − J
a

)−1

m
]

·
[(

I − J
b

)−1

m
]

= m�
[(

I − J
a

)−1]�(
I − J

b

)−1

m (A9)

with a, b ∈ C. If the eigenvalues of J/a and J/b have real part
smaller than one, we can use the power series expansion

(
I − J

a

)−1

=
∞∑

p=0

Jp

ap
, (A10)

so that Eq. (A9) becomes

m�
∞∑

p=0

∞∑
q=0

(Jp)�Jq

apbq
m. (A11)

Since J is random, the value of this expression randomly
fluctuates across different realizations of recurrent connec-
tivity J. We thus turn to a statistical characterization, and
evaluate Eq. (A9) by computing its mean and variance with
respect to different realizations of J.

The mean yields, to the leading order in N [12]:

m�
∞∑

p=0

∞∑
q=0

〈(Jp)�Jq〉J

apbq
m

= m�m
∞∑

p=0

(
g2

ab

)p

= N
∞∑

p=0

(
g2

ab

)p

= N
1

1 − g2

ab

= N
ab

ab − g2
. (A12)

We have used 〈
(Jp)�Jq

〉
J = δpq I g2p, (A13)

which comes from observing that Jp is a random matrix,
which is uncorrelated to Jq for q �= p, and has a variance of
g2p/N . This yields

N∑
k=1

〈(J p)ki(J
q)k j〉J =

N∑
k=1

δi jδpq
g2p

N
= δi jδpqg2p, (A14)

from which we obtain Eq. (A13).
The variance can be computed in a similar way. Like the

mean, the variance is characterized by O(N ) scaling [12]; as a
consequence, variability due to different realizations of J does
not enter the dot product Eq. (A9) to the leading order in N ,
and dot products can be replaced with their mean [Eq. (A12)]
when N → ∞.

We can now compute the mean norm of the spanning
vectors from combining Eqs. (A8) and (A12):

‖v+‖2

N
= 1

4N
(x+ · x+ + 2x+ · x− + x− · x−)

= 1

4

[
1

(1 + iω)2 − g2
+ 2

1 + ω2 − g2
+ 1

(1 − iω)2−g2

]

= (1 − g2)2 + ω2[2 − (1 − g2)]

[(1 − g2 − ω2)2 + 4ω2](1 − g2 + ω2)
; (A15)

the calculation of the norm of v− is very similar, and differs
only in the sign of the first summand in the second line
above:

‖v−‖2

N
= 1

4

[
− 2(1 − g2 − ω2)

(1 − g2 − ω2)2 + 4ω2
+ 2

1 − g2 + ω2

]

= ω2[ω2 + 2 − (1 − g2)]

[(1 − g2 − ω2)2 + 4ω2](1 − g2 + ω2)
. (A16)

Finally, when computing the dot product between the two
vectors, the cross terms cancel to yield

v+ · v−
N

= 1

4

[
− 1

(1 + iω)2 − g2
+ 1

(1 − iω)2 − g2

]

= ω

(1 − g2 − ω2)2 + 4ω2
. (A17)
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With these expressions, the angle θ between v+ and v− can be
written as

cos(θ ) = 1 − g2 + ω2√
(1 − g2)2 + ω2[2 − (1 − g2)]

√
ω2 + 2 − (1 − g2)

.

(A18)

By denoting ε = 1 − g2, we now summarize the statistics
of the spanning vectors v±:

‖v+‖2

N
= ω2(2 − ε) + ε2

(ε + ω2)[(ε − ω2)2 + 4ω2]
,

‖v−‖2

N
= ω2(2 − ε + ω2)

(ε + ω2)[(ε − ω2)2 + 4ω2]
, (A19)

v+ · v−
N

= ω

(ε − ω2)2 + 4ω2

and angle between the two spanning vectors reads

cos(θ ) = v+ · v−
‖v+‖‖v−‖ = ε + ω2

√
2 − ε + ω2

√
ε2 + ω2(2 − ε)

.

(A20)

4. Analysis of geometric properties of driven trajectories

We can use the expressions computed in Appendix A 3 to
evaluate the participation ratio d:

d = (ν1 + ν2)2

ν2
1 + ν2

2

, (A21)

where ν1 and ν2 are the eigenvalues of the reduced cross-
correlation matrix CR [Eq. (9)]. We express the eigenvalues
as

ν1,2 = 1

2
(γ ±

√
�2), (A22)

where γ := Tr(CR) and �2 := Tr2(CR) − 4 det(CR). This
yields

d = 2
γ 2

γ 2 + �2
, (A23)

from which Eq. (10) follows. Inserting the results from Ap-
pendix A 3, we also have

d = ε2 − 2εω2 + 4ω2 + ω4

ε2 + 2ω2 + ω4
. (A24)

We now consider some limiting behaviors of the quantities
computed above. In the high-frequency limit ω → ∞, the
norms and dot product of v± vanish, whereas the overlap is
given by

lim
ω→∞ cos(θ ) = 1√

2 − ε
= 1√

1 + g2
; (A25)

the dimensionality d tends to 1 in this limit.
In the limit of low frequency, for any 0 < g < 1 the norms

and dot product can be evaluated directly by substituting
ω = 0 to obtain

‖v−‖ = v+ · v− = 0 (A26)

and

‖v+‖ = 1√
2(1 − g2)

, (A27)

while the overlap assumes the same nonzero value as in the
other extreme:

cos(θ ) = 1√
1 + g2

(A28)

and the dimensionality is one.
Between the two extremes, the dot product, the partici-

pation ratio, and the norm ‖v−‖ obtain a maximum value
at a finite frequency. For any g, we compute the frequency
yielding the minimum angle, by searching for local extrema
of Eq. (A20):

∂cos2(θ )

∂ω
= ∂

∂ω

(ω2 + ε)2

(2 − ε)(ω4 − 2ω2ε + ε2) + 4ω2
= 0,

(A29)

the numerator of which, after some algebra, can be written as
8ω(ω4 − ε2). The angle thus has a local minimum at

ω∗ = √
ε =

√
1 − g2. (A30)

Likewise, from Eq. (A24) we have

∂d

∂ω
= 4

ω(ε − 1)[ω4 − ε2]

(ε2 + 2ω2 + ω4)2
, (A31)

which, again, implies a nontrivial maximum of d at ω∗(g) =√
1 − g2.
Finally, we observe that g = 1 is a singular point, as in the

limit of low frequency we have

lim
ω→0

‖v+‖ = lim
ω→0

‖v−‖ = lim
ω→0

v+ · v− = ∞, (A32)

but the overlap vanishes,

lim
ω→0

cos(θ ) = 0, (A33)

and the participation ratio attains its global maximum

lim
ω→0

d = 2. (A34)

Note that the limits limg→1,ω→0 d and limg→1,ω→0 cos(θ ) do
not exist, since they depend on the order of limits taken. To
see this, compare Eqs. (A28) and (A33).

5. Distribution of response phases

The phase spread in response of different units [Eq. (15)]
was computed as a numerical integral performed over the
probability distribution p(φ) whose analytical form is avail-
able in Ref. [24]. We used

p(φ) = 1

π‖v+‖‖v−‖
√

1 − ρ2

[
cos2(φ)

‖v+‖2(1 − ρ2)

+ sin2(φ)

‖v−‖2(1 − ρ2)
− 2ρ sin(φ) cos(φ)

‖v+‖‖v−‖(1 − ρ2)

]−1

, (A35)
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where ρ = cos(θ ). From Ref. [24] we also used

φ̄ = 1

2
arctan

(
2ρ‖v+‖‖v−‖

‖v+‖2 − ‖v−‖2

)
. (A36)

6. From-k regression

In this section, we explain how from-k least-squares regres-
sion (Fig. 4) is performed.

For 2 � k � N , we define the cropped spanning vectors as

[
vk

±
]

i
=

{
[v±]i, if 1 � i � k

0, otherwise
, (A37)

where [v±]i indicates the ith element of vectors v±. For every
k, the from-k LS regressor is given by the pseudo-inverse,
which yields the LS regressor of minimum norm:

nk
LS = (vk

+ vk
−)

( ‖vk
+‖2 vk

+ · vk
−

vk
+ · vk

− ‖vk
−‖2

)−1(
1

0

)
. (A38)

Note that nN
LS = nLS.

In the following, we show that any from-k readout vector
nk

LS with k < N is not fully contained in the plane spanned
by vectors v±. The from-k readout vector nk

LS is contained in
the plane spanned by cropped vectors vk

±. Consider now any
vector a which is orthogonal to the reservoir trajectory plane
spanned by v±. We have

0 = a · v± =
N∑

i=1

(a)i(v±)i. (A39)

We have that cropped vectors vk
± do overlap with vector a,

because

a · vk
± =

k∑
i=1

(a)i(v±)i = −
N∑

i=k+1

(a)i(v±)i �= 0. (A40)

As a result, the readout vector nk
LS also has a nonzero overlap

with a.

7. Analysis of least-squares regression: Norm

We analytically compute the norm of the least-squares
readout solution nLS [k = N , Eqs. (18) and (19)]. We start
from Eq. (19) to write

nLS = (v+ v−)
(
CR

)−1
(

1
0

)

= 1

‖v+‖2‖v−‖2[1 − cos2(θ )]
(v+ v−)

×
( ‖v−‖2 −v+ · v−

−v+ · v− ‖v+‖2

)(
1
0

)

= 1

‖v+‖2[1 − cos2(θ )]

(
v+ − v+ · v−

‖v−‖2
v−

)

:= ‖v+‖‖v−‖2

det(CR)
[v̂+ − cos(θ )v̂−]. (A41)

The vector within the parentheses above is contained in the
activity-spanning plane and is orthogonal to v−, and has norm

‖v+‖
√

1 − cos2(θ );

FIG. 9. Norm of LS-trained readout vector n. Computed via
Eq. (A42) for a range of values g and ω.

the norm of nLS is therefore given by

‖nLS‖ = 1

N‖v+‖
√

1 − cos2(θ )
. (A42)

We find that this expression is monotonically increasing in
both g and ω, as shown in Fig. 9.

8. Analysis of least-squares regression: Outlier eigenvalues

In this section, we compute the outlier eigenvalues of J̄
which result from full LS regression [k = N , Eqs. (18) and
(19)]. As derived in the main text, outliers obey

1 = nLS
�[(λI − J)−1m] := nLS

�xλ. (A43)

Because of Eq. (17), we know that the equation above admits
the solutions λ = λ± = 1 ± ω. In the following, we show that
λ± is in fact the only solution admitted. To this end, we use
Eq. (19) to rewrite the equation as

1 = (1 0)P�
(

v�
+

v�
−

)
xλ, (A44)

where we defined the short-hand notation P := (CR)−1. A
little algebra yields

1 = 1

2
(P11 P21)

(
(x+ + x−)�

i(x+ − x−)�

)
xλ

= [P11(x+ + x−)� + iP21(x+ − x−)�]xλ

= 1

2
[x�

+xλ(P11 + iP21) + x�
−xλ(P11 − iP21)]. (A45)

P11 and P21 are the elements of the first column of P = (CR)−1,
namely,

P11 = ‖v−‖2

‖v+‖2‖v−‖2[1 − cos2(θ )]
,

P21 = − v+ · v−
‖v+‖2‖v−‖2[1 − cos2(θ )]

. (A46)
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We can evaluate dot products in the form

x�
±xλ = [(λ±I − J)−1m]�[(λI − J)−1m] (A47)

by following Eq. (A12), which was derived in Appendix A 3
by averaging over the random connectivity J. This yields

1 = N

2

[
P11 + iP21

λ+λ − g2
+ P11 − iP21

λ−λ − g2

]
, (A48)

which can be recast as a quadratic equation in λ:

(1 + ω2)λ2 − [2g2 + N (P11 + ωP21)]λ + g4 + Ng2P11 = 0.

(A49)
As we know that the quadratic equation above is satisfied
by λ = λ±, we conclude that Eq. (A43) cannot admit other
solutions beyond these two.

9. Condition number of the cross-correlation matrix

The condition number of the reduced cross-correlation ma-
trix CR is defined as

c = ν1

ν2
, (A50)

where ν1 and ν2 are the two eigenvalues of CR. Their value
can be computed as a function of the statistics of the span-
ning vectors v±, which in turns depend on ω and g (see
Appendix A 3).

In this section, we show that for fixed g, the condition num-
ber c is minimized at the same value of ω which maximizes
the participation ratio d; this frequency coincides with ω∗ (see
Appendix A 4). Using

ν1,2 = 1

2
(γ ±

√
�2), (A51)

we have

d = 2
γ 2

γ 2 + �2
= 2

1 + (
�
γ

)2 , (A52)

while

c = γ + �

γ − �
= 1 + 2

γ

�
− 1

. (A53)

The participation ratio d is maximized when the quantity �
γ

is
minimized, which is precisely where the condition number c
is minimized.

10. Analysis of ridge regression

We start by computing the readout vector which performs
ridge regression in the Fourier space. The ridge regressor
of Eq. (17) can be written in terms of the v± spanning

vectors as [18]

ñR = (v+ v−)P̃

(
1

0

)
, (A54)

where P̃ = (CR + Nσ 2I)−1,

P̃ = 1

det (CR + Nσ 2I)

(‖v−‖2 + Nσ 2 −v+ · v−
−v+ · v− ‖v+‖2 + Nσ 2

)
.

(A55)
This yields the ridge regressor readout:

ñR = ‖v−‖2‖v+‖
det (CR + Nσ 2I)

[(
1 + Nσ 2

‖v−‖2

)
v̂+ − cos(θ )v̂−

]
,

(A56)

where v̂ indicates a normalized vector. By comparison with
the LS regressor, Eq. (A41), we observe that σ has two effects
on the readout: first, it reduces the norm, as expected from a
regularizer. Second, it biases the readout vector towards v+.

The outlier eigenvalues λ̃± imposed by the ridge re-
gressor can be found by utilizing the same strategy as in
Appendix A 8. We insert P11 = P̃11, P21 = P̃21 and λ± =
1 ± ω into Eq. (A48) to obtain the equation for the outlier
eigenvalues λ̃:

(1 + ω2)λ̃2 −
[

2g2 + N
−ωv+ · v− + ‖v−‖2 + σ 2

det (CR + Nσ 2I)

]
λ̃

+
[

g4 + g2N
‖v−‖2 + σ 2

det (CR + Nσ 2I)

]
= 0. (A57)

Depending on the values of σ , ω and g, the equation above
admits real or complex conjugate eigenvalues (see Fig. 10).
For low frequencies, the dynamics are characterized by two
real eigenvalues λ̃±. As ω increases, a complex conjugate
pair of eigenvalues is formed. Importantly, their real part is
always smaller than 1, yielding stable closed-loop dynamics.
To see this, we approximate the real part of the solution

FIG. 10. Bifurcation diagram for networks trained through ridge
regression. For a range of the regularization parameter σ (gray
shades), the curve represents the location on the g-ω plane at which
the outlier eigenvalues λ̃± bifurcate from two real eigenvalues into a
pair or complex conjugate eigenvalues.
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FIG. 11. Lyapunov dimensionality of driven nonlinear networks. (a) Lyapunov dimensionality (color code) of driven activity in nonlinear
networks as a function of connectivity strength g and target frequency ω. The target amplitude is taken to be A = 0.1 (left), A = 1 (center),
and A = 2 (right). (b) Edge-of-chaos curves extracted from the heat maps in panel (a): we plot the minimal value of connectivity strength gc

for which the Lyapunov dimensionality is significantly nonzero.

to Eq. (A57) by assuming that σ � 1:

R(λ̃+) ≈ g2

1 + ω2
+ ωv+ · v− + ‖v−‖2 + σ 2

2(1 + ω2)[‖v+‖2‖v−‖2 sin2(θ ) + σ 2(‖v+‖2 + ‖v−‖2)]
. (A58)

Now, by use of Eq. (A19) we evaluate

‖v+‖2 + ‖v−‖2 = 1

1 + ω2 − g2
,

implying that the prefactor for the σ 2 term in the denomina-
tor is always larger than 1; as a consequence, σ > 0 always
reduces the real part.

To conclude, note that the analysis above allows to predict
the behavior of outlier eigenvalues when ridge regression is
performed in the Fourier space [i.e., from the two-dimensional
system of equations in Eq. (17)]. In Figs. 1 and 5, how-
ever, regression is performed in the temporal domain, on
a higher-dimensional (L′-dimensional) set of equations (see
Appendix A 1). In order to compare the analytical prediction
with trained networks, in Fig. 5 we thus scale the regu-
larization parameter w.r.t. the value of σ which is used to
derive analytical predictions, i.e., we set (σ R)2 = σ 2 · L′/2
(see Appendix A 1).

11. Characterization of the edge-of-chaos in nonlinear networks

In analyzing nonlinear networks (Figs. 1 and 6), we varied
the strength of internal connectivity g in such a way that
the open-loop dynamics driven by the target function f (t )
remains nonchaotic [15] for every value of the forcing fre-
quency tested. The critical value of connectivity strength gc at
which open-loop dynamics becomes chaotic depends on the
target frequency ω and amplitude A [25], and was investigated
numerically (Fig. 11).

In order to find the critical values gc, we start by computing
the Lyapunov dimension dL of driven activity [28,29], which
is defined based on the Lyapunov spectrum � = {μi}N

i=1.
Intuitively, Lyapunov exponents μi quantify the rate of ex-
ponential convergence or divergence of nearby trajectories
along the different directions in state-space. If we order the
exponents such that μ1 � μ2 � · · · � μN , the Kaplan-Yorke
conjecture asserts that the Lyapunov dimension of the attrac-
tor is given by the index j for which the number of contracting
and expanding dimensions of the dynamics are balanced,
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namely, the index j for which

j∑
i=1

μi � 0

and
j+1∑
i=1

μi < 0.

In order to allow for attractors of fractal dimension, the di-
mension is defined as

dL = j +
∑ j

i=1 μi

|μ j+1| . (A59)

Note that dL is bound from below by 0. An attractor is
considered chaotic iff the maximal Lyapunov exponent μ1 is
positive, implying dL > 0.

The Lyapunov spectrum � is computed numerically by
evaluating the mean logarithmic growth of perturbations in
the tangent space of the dynamics. To do so, we follow a
QR-decomposition method, outlined in Ref. [29]. The result-
ing Lyapunov dimension of activity in our driven reservoirs
is show in Fig. 11(a) for a range of g, ω and A values.
From these maps we extract, for each value of the target
amplitude A, the edge-of-chaos connectivity strength gc(ω)
which corresponds to the minimal value of g for which dL > 0
[Fig. 11(b)].
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