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Abstract
Cooperative interactions between individuals in a population and their stability properties are central to
population dynamics and evolution.We introduce a generic class of nonlinear dynamical systems
describing such interactions between producers andnon-producers of a rapidly equilibrating
common resource extracted fromafinite environment. In the deterministicmeanfield approximation,
fast-growingnon-producers drive the entire population to extinction.However, the presence of
arbitrarily small perturbations destabilizes thisfixed point into a stochastic attractorwhere both
phenotypes can survive. Phase space arguments andmoment closure are used to characterize the
attractor and show that its properties are not determined by thenoise amplitude or boundary
conditions, but rather it is stabilized by the stochastic nonlinear dynamics. SpatialMonteCarlo
simulationswith demographicfluctuations anddiffusion illustrate a similar effect, supporting the
validity of the two-dimensional stochastic differential equation as an approximation. The functional
distributionof thenoise emerges as themain factordetermining thedynamical outcome.Noise resulting
fromdiffusionbetweendifferent regions, or additive noise, induce coexistencewhilemultiplicative or
local demographic noise donot alter the outcomeof deterministic dynamics. The results are discussed
in a general context of the effect of noise onphase space structure.

1. Introduction

The evolution and stability of cooperative interactions
between individuals has been a topic of interest in
many areas of research. Growth and reproduction
typically depend on a limited supply of resources that
are shared, to some degree, by many individuals in the
population; the production and consumption of these
resources can mediate indirect interactions between
them. One type of cooperative interaction is induced
by the production of public goods: in a population
inhabiting a shared environment, growth may depend
on resources produced or actively extracted from the
environment, typically at a cost. Once produced, these
resources can be shared by other individuals and can
thus benefit the population as a whole. Cooperative
public goods interactions are particularly important in
microbial populations, with many examples including

extracellular enzymes [1–3] and iron chelators [4–8].
For reviews see [9–11].

The problem of public goods can be viewed in a
general theoretical context. In the extreme case where
they are essential for survival, a simple argument can
bemade for the selective advantage of ‘cheater’ pheno-
types that utilize the goods without investing the cost
of producing it [12, 13]. Evolutionary consequences of
this argument were extensively investigated within the
framework of game theory [14–16]. In this approach,
individuals directly interact with one another in pairs;
in well-mixed systems the probability of interaction is
uniform, whereas in spatial extensions assumptions
about the mode of interaction needs to be made, for
example nearest neighbors. More specific to microbial
dynamics, models have been developed that extend
game theory to include physical aspects of the part-
icular problem [2, 17–19]. These studies have shown
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that the apparent paradox of extinction is readily
solved with the addition of realistic effects such as pri-
vileged share, time-varying strategy, spatial structure
and segregation, andmore [20, 21].

Here, we take an ecological approach which con-
siders physical interactions mediated by the environ-
ment [18, 22–24]. The environment is a dynamical
variable which is shaped by the populations’ behavior;
in turn, this environment affects the growth and fitness
of the same populations. We have recently developed
such an approach, especially suited for the context of
microbial public goods dynamics, and showed that
both temporal [25] and spatial [26] fluctuations induce
coexistence in nontrivial ways. In particular, simula-
tions show that demographic noise and diffusion in
space can induce long lasting spatio-temporal patterns
for a broad range of intermediate diffusion coefficients
[26]. This fluctuation-driven coexistence was explained
by an absorbing state transition argument which relies
onorganismdiscreteness and cycles of local extinction.

In many cases, the public goods are small molecules
that turn-over much more rapidly than the timescales
typical of cell division. This time scale separation pro-
vides the opportunity to reduce the problemby one vari-
able and describe the environmental dynamics through
the indirect effect of the populations on themselves. This
approach is widespread in ecology but has not been
extensively studied in the context of public goods. We
develop a general two-dimensional nonlinear dynamical
system valid in this regime and investigate its sensitivity
to different noise types. For a large class of such models
the extinction state transforms upon introduction of
infinitesimal noise to a stochastic attractor. This instabil-
ity is non-perturbative, namely the attractor dimensions
are not proportional to the noise amplitude. Extinction
is destabilized by noise, meaning that a single progenitor
(e.g. added by migration) can restore a macroscopic
population, even though the deterministic equations
predict that it should goback to extinction.

We find that the effect strongly depends on the noise
functional shape. In particular, only additive noise desta-
bilizes the extinction fixed point and gives rise to a sto-
chastic attractor. These results are then demonstrated
using numerical simulations in a realistic spatial model
with diffusion and demographic noise, indicating the
natural emergence of an effective noise inducing a sto-
chastic attractor over a broadparameter regime.

2.Deterministic 2D ecologicalmodel

Consider two populations with concentrations A and
B, sharing a resource C. This resource is extracted
from the environment by B, which pays the price of a
slightly lower net growth rate, and is therefore
considered the cooperative sub-population. Once
available, the resource is consumed by both produ-
cers and non-producers. In the mean-field

approximation [25, 26]:
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Here time is measured in dimensionless units, where
the death rate of A is taken to be unity. Production of
the resource by B follows an increasing nonlinear
saturating function ( )h B , consistent with a finite
environment. The resource is consumed by both A
andB. For simplicity, we assume that both populations
have the same growth rate, m m=( ) ( )C CA B a non-
decreasing function of C, and the same yield coeffi-
cient = =Y Y 1A B . The cost of production is
modeled as a higher death rate forB, a > 1.

An isolated producer population ( = >A B0, 0)
undergoes a bifurcation as a function of
parameters from an extinction phase to a growth
phase where it can sustain a stable equilibrium
with the extracted resource [25]; intuitively, it needs to
consume the resource not faster than it extracts it.
In what follows we assume parameters of the
producer population are in the region allowing such
equilibrium.

The key approximation employed here is that
resource extraction and consumption are significantly
faster than organism reproduction. This approx-
imation is relevant in many biological cases, since
often the public goods are small molecules that diffuse
rapidly. Bacterial production and secretion of enzymes
occurs on a time scale of seconds to minutes, while
division typically takes 20 min to an hour. Assuming
mixing of resources with no privileged share leads to a
Quasi Steady-State (QSS) approximation:
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The environmentally mediated indirect interaction
between the two sub-populations is now described by
their common growth rate: ( )f A B, , instantaneously
determinedby thepopulation composition.

This growth rate function, common to both phe-
notypes, has an increasing saturating numerator,

( )h B , representing the production of resource by one
sub-population; and a denominator +( )A B1
describing a density-dependent decrease of the growth
rate. It therefore decreases with A for fixed B, showing
that A is always a burden on the shared environment;
and is non-monotonous with B for fixed A, with a
maximum at some intermediate value, because of the
saturating benefit and linear cost of increasing the pro-
ducer population (figure 1). These features represent
general qualitative properties of microbial growth and
resource extraction and have a crucial effect on the
dynamics. All theoretical conclusions below depend
on these general features and are not sensitive to the
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exact functions. Computations will be presented for
the specific case of a hyperbolic production func-
tion = +( ) ( )h B B B V .

3. Results

The dynamical system (2) has two saddle fixed points:
(i) An empty state =( ) ( )* *A B, 0, 01 1 corresponding
to extinction. (ii) A saddle-point corresponding to the
equilibrium of the producing B population with the
resource in the absence of A; this point occurs at

a=( )*f B0, 2 . This saddle point is stable along the
line =A 0 and unstable to perturbations with a
nonzeroA component (‘invasion’ of a smallA popula-
tion), see appendix A for details. Following such an
invasion, the system will be driven to extinction. In a
typical solution, the non-producer population A
grows to a high concentration and subsequently drives
both sub-populations to zero (Black lines infigure 2).

These saddles points are the intersections of the two
nullclines in phase space. Given the general properties of

( )f A B, described above, these nullclines create a typical

geometric structure in phase space, as can be seen in
figure 4(a). The generality of this structure is illustrated in
the two bottom lines of figure 3; compare left column
displaying the equations of motion, to right column
showing the phase space. Inwhat follows itwill be shown
that the effect of noise on the nonlinear dynamical sys-
tem is strongly affected by this nullcline structure, which
in turn reflects the properties of the growth function.

4. Effect of stochasticfluctuations

To incorporate the effect of random fluctuations, still
assuming a well-mixed environment, we rewrite
equation (2) as a Stochastic Differential equation :
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where ( )wd t
i , =i A B, are independent, zero mean

Gaussian random variables and gA,gB are sufficiently
smooth noise amplitude functions. Such noise can be,
for example, the result of fluctuations in the

Figure 1. Lines of constant growth function ( )f A B, as a function in the (A,B) plane. Bottom: ( )f A B, as a function ofA for fixedB
( fB(A)). Right: ( )f A B, as a function ofB for fixedA ( fA(B)).

Figure 2. Solutions of equation (2) and equation (3) (without andwith fluctuations), for initial condition = =A B0.3, 0.1. (a)
Concentrations ofA (solid lines) andB (dashed lines)without noise (black lines) andwith additive noise with amplitude
e = 0.01 (gray lines) as a function of time. (b)The same trajectories plotted in the (A,B) plane.
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environment, causing stochastic birth and death rates,
suggesting multiplicative amplitudes, e=g AA ,

e=g BB . It can also be the result of additive noise in C
in the original three variable system (1), that would
translate after the QSS approximation into a multi-
plicative noise in A and B. Alternatively, noise can
originate from demographic fluctuations, leading to:

e=g AA , e=g BB . Finally, noise could result
from the migration of individuals from neighboring
regions. This can be roughly approximated by an
additive noise e= =g gA B . We will later show that
discrete spatial simulation produce a behavior similar
to the one obtained with additive noise. A more
complex nonlinear noise can emerge from the effect of
additive noise in A and B on the noise level in C in the
original equations. This nonlinear noise is shown to
have an effect to the linear noise in appendix B.

Figures 2(a), (b) (gray lines) show solutions of
equation (3) for the case of additive noise. It is seen
that with additive noise, both populations continue to
fluctuate for the entire time presented and do not col-
lapse to zero, in contrast with the deterministic trajec-
tory. Surprisingly, the introduction of arbitrarily small
noise levels induces a qualitative change in the dynam-
ics and leads to the emergence of a stochastic attractor,
keeping the trajectories away from the origin inside
the coexistence regime >( )A B, 0 .

The emergence of this stochastic attractor can be
understood using a geometric analysis of equation (2).
Figure 4(a) shows the nullclines, which include the

entire A=0 axis and two curves defined by
=( )f A B, 1and a=( )f A B, (depicted by gray solid

lines). The dynamical system presented by
equation (2) has an invariant manifold connecting the
two fixed points, namely, amanifold with the property
that initial conditions starting in it will give rise to tra-
jectories that remain inside the same manifold (in this
case, a line). This manifold Γ originates from

=( ) ( )* * *A B B, 0, ;2 2 2 trajectories move away from this
point, and terminate at the origin along the stable
manifold of =( ) ( )* *A B, 0, 01 1 . This manifold is
depicted by a dashed black line in figure 4(a). For any
initial condition >A B, 0, trajectories will approach
Γ exponentially fast and then follow it closely towards
the origin. (See figure 4(a), black lines with arrows, for
examples of trajectories).

Now, consider the effect of small additive noise on
this phase space structure. Any trajectory will initially
follow a noisy approximation of the fast relaxation
towards the invariant manifold and then proceed
close to that manifold as it approaches the origin
(black line figure 4(b)). However, the invariant mani-
fold crosses between the two nullclines, which form a
narrowing ‘channel’ as they approach the origin;
therefore it becomes increasingly improbable that
the noise trajectory remains below the nullclines and
does not enter the growth region (light gray in
figure 4(b)).

Figure 3.Groups of dynamical systems determined by growth function ( )f A B, properties. The first column describes the equations
studied in each case. All systems converge to the origin in themean field. The second column is the results of integrating these
equations, with additive fluctuation, as a function of time.While some systems exhibit dynamics similar to the one obtained in the
mean field (first three rows), others have oscillating solutions around a non-zero stochastic attractor. The third column represents the
same trajectories plotted in the (A,B) plane. The last columndescribes the lines of constant growth function ( )f A B, as infigure 1.
When the functional shape of ( )f A B, is similar tofigure 1, a stochastic attractor emerges (last two rows).When it is different, even if
the noise and the boundary and initial condition are the same, a stochastic attractor does not emerge.
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While the noise can in principle lead to negative
values, these are avoided throught reflecting boundary
conditions. Once a random fluctuation causes shifts in
the trajectory above the nullclines into the growth
region, it will shoot up as the two populations grow
exponentially to relax rapidly again towards the invar-
iant manifold and then follow slowly along this route
back towards the origin. Thus, in the small noise limit,
the structure of phase space (the nullclines and the
deterministic invariantmanifold) suggest a typical pic-
ture of cycling trajectories, which can get close to the
origin, but have an exceedingly small probability to
actually reach it. Accordingly, the moments of the sto-
chastic attractor in this region, are insensitive to the
noise amplitude, as seen in figure 4(d) in the regions of
small ε.

These geometric considerations hold also for the
nonlinear systems described in figure 3, two bottom
rows, since they depend on qualitative features of the
nullclines.

For larger noise values, the attractor is broader and
can be characterized using a self-consistent moment
closure argument. We assume a unique point density,
namely, a probability density for a trajectory to visit
that point in phase space. It is computed by initiating a
large sample of trajectories at different parts of phase
space and following them over time. If this point den-
sity has finite averages A B,0 0 and standard deviations
s s,A B, the differential changes in dynamical variables
weighted by the point density should average to zero.
These differential changes A Bd , d can be computed
over the ensemble of trajectories, averaged over noise

realizations and initial conditions. Expanding them in
moments, yields a formal hierarchy of equations.
Truncating at the second moment, i.e. neglecting all
moments of -( )A A0 and -( )B B0 higher than 2,
yields the following equations for the first moments
(see appendix C for the justification of truncating
beyond the secondmoment):

s s
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For the parameters of figure 4, we find that the
conditions á ñ = á ñ =A Bd d 00 0 are met with the fol-
lowing signs

a
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5

0 0 0
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Therefore a< <( )f A B1 ,0 0 (i.e. in this case the
average of the stochastic attractor ( )A B,0 0 lies
between the two nullclines).

A similar calculation for the second moment
(appendix D), with additive noise and hyperbolic pro-
duction shows a strictly positive variance, which is
consistent with simulations showing that both popu-
lations undergo fluctuating trajectories, and neither
become extinct. Figure 4(c) depicts a numerical com-
putation of the density point. Figure 4(d) shows the
computed averages and standard deviations of the
producing population B as a function of the noise

Figure 4. (a)Deterministic dynamics: nullclines (gray lines) and exemplary trajectories (black lines) show their rapid convergence to
the invariantmanifold and the subsequentflow along thatmanifold to the origin. (b)The nullclines divide space into regions with
different signs of the dynamic variables derivatives. Light gray: both populations increase;mediumgray:A increases, whileB decreases;
dark gray: both decrease. Deterministic trajectories are depicted inwhite arrows. A single long trajectory of the systemwith additive
noise (e = ´ -3.16 10 2) is shown in black on top of this picture, which cycles around the lower portion of the invariantmanifold,
comes close to the origin but is repeatedly kicked away by fluctuations. (c)Numerical estimate of the invariantmeasure. Equation (3)
was solvedwith 40 initial conditions on a uniform grid. A histogram representing the underlying invariantmeasure of the stochastic
dynamics (e = -10 1) , was constructed by counting the number of time-steps visited by the trajectories in each bin. (d)The average
and standard deviation ofB over a trajectories as a function of the rescaled noise amplitude ε.
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amplitude. As discussed above, at low noise trajec-
tories follow the nullclines and changing noise ampl-
itude by four orders of magnitudes leads to a very
small effect on the first moments of B. As expected,
bothmoments increase with sufficiently large noise.

While we have here studied a specific realization,
the failure of the mean field approximation and the
emergence of a stochastic attractor as described, result
from general properties of the growth function

( )f A B, . Different growth functions with similar
shapes yield similar results (figure 3, two bottom rows).
Moreover, growth functions with different shapes in
equation (3), with similar boundary conditions and
noise levels, converge to the extinction state as pre-
dicted by deterministic dynamics (figure 3, three top
rows). This shows that the results presented above are a
consequence of intrinsic properties of the dynamics
(e.g. phase space structure), rather than being a trivial
consequence of noise or boundary conditions.

As mentioned, reflecting boundary conditions
prevent negative values. However, these events of
reflection from the walls are rare and they do not pro-
vide the mechanism for population maintenance (see
appendix E for evidence of long times between reflec-
tions from thewalls).

For multiplicative fluctuations, the qualitative argu-
ment described above fails. As trajectories follow the
invariant manifold to the origin, the amplitude of the
fluctuations decreases and may not be large enough to
push them back into the growth regime (appendix F,
figure11). Indeed, applying themoment-closure approx-
imation, the equations for thefirstmoments ( )A B,0 0 are
the same as equation (4). However, the second moment
equations differ, with no solution other than zero
( s s= = = =A B 0;A B0 0 appendix F). Demo-
graphic fluctuations present an intermediate case where,
for small population sizes, fluctuations are sub-linear but
still vanish at the origin. Numerical integration with
demographic noise shows that this vanishing induces a
collapse of the stochastic system to the extinction fixed
point, similar to multiplicative noise (appendix F,
figure 11). Monte-Carlo simulations using discrete indi-
viduals, in which the probability of division/birth is
determined by the environment in the same way as the
growth rate in equation (2), show that in this case the sys-
tem is indeeddriven to extinction (datanot shown).

5. Realization of additive noise

Adding noise to the mean-field equations may be
considered as a phenomenological approximation.
However, strictly additive noise is not required for the
emergence of a stochastic attractor; the only require-
ment is that the probability to cross the null-clines
approaches one near the origin. As different types of
noise gives rise to qualitatively different dynamics, it is
of interest to return to a full two-variable stochastic

model and investigate its behavior directly. Therefore,
we constructed a Monte Carlo simulation of two
populations of discrete individuals interacting as in
equation (2) with diffusion in a one-dimensional
lattice. Each lattice can contain many individuals; the
population composition places constraints on the
possible growth rate. The number of A and B
individuals added/removed to each lattice site in each
time interval Dt was computed using a binomial
probability distribution. Diffusion and reactions were
performed using asynchronous updating of the lattice
sites. The order at which lattice sites were updated was
randomized in each time interval. Diffusion took place
between neighboring lattice sites. A detailed descrip-
tion of the simulation platform was previously
reported [26–29]. Figure 5 shows the distribution of
both sub-populations in space at a given time, for two
different lattice sizes (10 for a, b, 100 for c, d) and for a
broad range of diffusion coefficients. Coexistence by
spatio-temporal fluctuations persists for a large inter-
mediate range if the system is large enough as
compared with the typical diffusion scales to allow for
the existence of weakly coupled regions. This observa-
tion supports the mean field equation with additive
noise as a simplified model for the fully stochastic
system: even if the environment itself is homogeneous,
diffusion in extended space induces an effective
additive noise between neighboring regions. Gillespie
simulations produce similar results (appendix G). The
noise induced by the diffusion term in the simulation
has, to a good approximation, no correlation in time, a
zero average and a standard deviation weakly affected
by the amplitude. Figure 6 show the means and
standard deviations of the diffusion terms in the
simulation of figure 5. Specifically, for each lattice site
and each time step the contribution of diffusion was
measured from its neighbors. A diffusion coefficient
that leads to coexistence in the spatial simulation was
used. The diffusion term produces an effective noise
with an average close to 0 (figure 6(a)). One can see
that large changes in the local concentration has aweak
effect on the noise standard deviation (figure 6(b)).
The absence of correlation can be observed in
figure 6(c). We conclude that the similar effect of
spatial, explicitly discrete models and of non-spatial
models with additive noise suggests that these two
types of realizations are similar, one providing a good
approximation of the other. Further study is required
to determinewhether this similarity can be generalized
to a large class of systems.

6.Discussion

Starting from a model with explicit description of the
environment as a dynamical variable, relying on the
approximation of rapid equilibration of resource
and assuming timescale separation, we derived an
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ecological model for cooperative public-goods inter-
actions. The resulting two-dimensional nonlinear
dynamical system reflects the non-symmetric role of
subpopulations with respect to the environment and
their indirectmutual effect on growth.

The model retains the total population size as a
dynamical variable in addition to the fractions of the
two competing-cooperating sub-populations. The
importance ofmaintaining this ecological factor in the
model can be appreciated by comparing our results to

Figure 5. Snapshots of simulationswith discrete numbers of individuals in an extended one-dimensional environment. Dynamics of
the stochastic interaction producing ameanfield equation as in equation (2)with diffusionwere simulated for extended time and a
snapshot of the concentrations in space is displayed. Diffusion coefficients (the same for both phenotypes; x-axis) and grid size (top
two versus bottom two panels)were varied in different simulations. The y-axis denotes position along the one-dimensional lattice.
The initial conditions are uniformover all space. The grayscale represent log concentrations. (a) log ofA and (b) log ofB
concentrations on 10× 1 grid size; (c) log ofA and (d) log ofB concentration on 100× 1 grid size. Regions of total or partial extinction
are explicitlymarked. One can clearly see an intermediate range of diffusion coefficients where both populations survive, which
increases with increasing grid size.

Figure 6. (a)Meanof the diffusion terms ofA (black line) andB (gray line) as a function of the values ofA andB, respectively. (b)
Standard deviations of the diffusion terms ofA (black line) andB (gray line) as a function of the values ofA andB, respectively. (c)
Autocorrelation of the diffusion terms ofA (black line) andB (gray line) as a function of time. The simulation runs on 100x1 one
dimensional lattice, with the same parameters as figure 5, with a diffusion coefficient of 0.1.
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recent models that have addressed explicitly the diffu-
sivity of public goods in cooperative population mod-
els [24, 30]. In these spatial models, each lattice site
could contain only one cell. The results showed no
coexistence in a rapidly equilibrating resource limit
[24], or a coexistence that depended on privileged
share overcoming the diffusion [30]. This is in contrast
to the results presented here and in [26].

The role of population size was highlighted also in
[31]. Here the formalism of the Wright–Fisher model
was extended to a varying population size that depends
on its composition. This work illustrated clearly that
the invasion probability in finite mixed population
reflects not only the relative fitness but also the popu-
lation size, and indeed can result in coexistence. In our
model the population size reflects its structure without
explicitly assuming a form for the carrying capacity, as
discussed in the model presentation. A carrying capa-
city effect thus emerges naturally from our model
without the need to postulate it as an additional
assumption.

Analyzing the geometry of nullclines in the two
dimensional model, we found that in the continuous
mean-field approximation (no noise), invasion by a
non-producing population results in extinction of the
entire population. Introducing noise to the differential
equations, we found that this point is dynamically
unstable and is sensitive to additive noise; this instabil-
ity results in the appearance of a stable stochastic
attractor. These results are insensitive to a wide range
of model details and parameters, such as the noise
amplitude, the functional dependence of growth rate
on the environment, the exact formof resource extrac-
tion rate and the fitness advantage for the non-produ-
cers (e.g., lower growth instead of higher death; data
not shown). However, other types of noise, such as
multiplicative noise, do not destabilize the extinction
fixed point.

To support the realistic role of additive noise in the
differential equations, we have shown in numerical
simulations that coupling of diffusion with a demo-
graphic noise in an extended system may be indeed
approximated by an effective additive noise in a well
mixed system. This supports a picture where the out-
of-phase dynamics of different spatial regions intro-
duces a randomflow that is weakly affected by the local
concentration of individuals. However, additional
investigation is required to fully justify this approx-
imation of adding noise phemonenologically to the
mean-field equations and show that our simplified
model with additive noise captures the behavior of
more complex and realisticmodels.

Our results represent, to the best of our knowl-
edge, the first example of a purely stochastic emer-
gence of a new attractor in a system with a single
absorbing state attractor. A similar argument may
hold in a variety of other systems, where extinction is
the only expected outcome of the mean field system.

While in most dynamical system with a single absorb-
ing state at the origin, the introduction of additive
noise and reflecting boundary condition would keep
the system close to the origin, there may be a wide
category of models with long trajectories, where such
perturbations could have a drastic effect. More gen-
erally these results highlight, as seen many times
before, the important effect of fluctuations and their
nature on the basic properties of ecological systems
and the possible failure of mean-field approximations
[27, 32–35].
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AppendixA

The dynamical system (2) with hyperbolic production
has a fixed point a= -( ) ( )* *A B V, 0, 1 . Since A
andB are non-negative densities, this fixed point exists
if and only if a<V 1 . This state is stable in the B
direction, and unstable in the A direction. Therefore,
thisfixed point is only stable in the systemwith noA.

System (2) also has a fixed point at the origin. Note
that the dynamics at the zero point itself are not
defined, since + +[( )( )]B A B B V is not defined
for = =A B 0. Only deviations that are on the B-axis
are attracted to the a= -( ) ( )* *A B V, 0, 1 fixed
point. All deviations with a positive A value are attrac-
ted to the zero state.

Appendix B

Additional noise that can affect the results of the
system is additive noise in the full model. The three
variablesmodel is:

d

d
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= - +
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[ ]
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Additive noise in this model creates another indirect
noise resulting from the effect of A and B on C. Assume
that we have additive noise in A and B, the dynamic of C

changes to be e e= - + + +e
e
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+ +
( )C A BC

t
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d 1 2
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while e1 and e2 are the fluctuations in A and B Respec-
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twovariablesmodel is:
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In thismodel both populations survive (figure 7).

AppendixC

We have estimated the moments of the distribution of
A and B as a function of the noise level. As discussed in
the main text, the effect of the noise level on the
moment is limited. The more important point is that
for all noise levels, the third and fourth moments are
much smaller than the first and second moment and
can thus be ignored in the moment closure approach
(figure 8).

AppendixD

Denote the averages of ( )A t and ( )B t over all possible
realization with a fixed initial condition, at fixed time t

by ( )A t0 and ( )B t0 , respectively. Similarly, denote the
variances as s ( )tA

2 and s ( )tB
2 .The expected change in

( )A t can be computed to be:

e

D = -

´ +
= -

( ) [([ ( ( ) ( )) ]))
(( ( )) ]
([ ( ( ) ( )) ] ( ))

( )
E A E f A t B t

A t t w

E f A t B t A t t

, 1

d d

, 1 d .

8t
A

Since the added noise is assumed to be of zero mean;
and similarly for the B derivative. If A and B sample an
invariant measure, i.e. assuming the dynamics are
ergodic, we can estimate equation (8) to be

ò
ò

D = D
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E A A p A B A B

A B p A B f A B A t
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AdB p A B f A B B t

, d

d , , d ,

10

where ( )p A B, is the probability density of trajectories
passing in a given position infinitesimal rectangle in
phase space + ´ +[ ] [ ]A A A B B B, d , d . This can be
approximated tofirst order by

Figure 7.The results ofmodel (7) as a function of time (a) and in phase space (b)with additive noise e = 0.1 and the initial point
=( ) ( )A B, 0.1, 0.1 . The parameters that are used d d e e= = = =1; 1.05; 0.01; 0.011 2 1 2 .

Figure 8.The first fourmoments ofA (left) andB (right) as a function of ε.
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where odd terms cancel the last line is specifically for
hyperbolic production. Similarly forB
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For most parameters studied here, the function rA is
negative and the function rB is positive. A sufficient
condition for this is s sB A . Similar equations can be
computed for the second moment in the case of
additive noise, wherewe ignore highermoments
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If there is a stochastic attractor, the averages should
vanish, andone obtains the following four equations for

hyperbolic production:
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Therefore, the steady state values for the second
moment (from equations (13)-(a)-(b)):
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showing that it attains a nonzero value. Figure (9)
depicts the solution of (13).

Appendix E

Adding noise to the system in equation (2) has the
potential to bring the populations below 0. In order to
prevent negative values, the stochastic simulation has
reflecting boundary conditions for all noise types
preventing any negative values. Note that a wall
boundary condition would do the same, since the
additive noise would remove us from the wall. Note,
importantly that a stochastic attractor is obtained that
rarely encounter the boundary. This attractor is the
result of the positive feedback of the producers on
themselves and is expressed by a net contribution to
the growth term of the second order noise term. In
order to show that this is indeed the case, we set a
threshold near B=0 ( = -B 10 4), and computed
the distribution of time periods spent above the
threshold, and the same distribution below the thresh-
old. While the distribution of times above the thresh-
old spansmany orders, the distribution of times below
threshold is limited to short interval. Thus, once the
trajectory escapes the absorbing state, it passes through
a long trajectory far from the boundaries. The typical
time between encounters with the wall is not a
function of the production saturation level, but is
decreasing linearly with the noise level, since as the
noise level increase so does the random probability of
making a random jump beyond to negative values
(figure 10).
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Appendix F

If the fluctuations in the population growth rates are
multiplicative:
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The dynamics of the firstmoment are equal to the ones
obtained for the additive noise (equations (11) and
(12) in appendix D and figure 9). However, the
equations for the second moment are different. For

hyperbolic production, they are:
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Similarly forB:
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Therefore the steady-state conditions for the stochas-
tic attractor are

Figure 9.The solutions of the third equations (13)-(c) (dark gray line), and the solutions of the fourth equation (13)-(d) (light gray
line) under the conditions of the twofirst equations ((13)-(a), (b)). The solution (the intersection of the dark and light gray lines) exists.
In addition, one can see that this solution is very close to the region between the two null-clines (dashed black lines).

Figure 10.Histogramof the time periods spent above the threshold (solid black linewith circles), and below the threshold (gray bar).
The threshold = -B 10 4.
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Figure 11.ODE simulation of equation (2), withmultiplicative fluctuations (thefirst row) and demographic fluctuations (the second
row), for the initial point = =A B200, 50. The first column: the values ofA andB as a function of time. The second column: the
trajectories of theODE in phase space.

Figure 12.The solutions of the third equation (18)-(c) (dark gray line) and of the fourth equation (18)-(d) (light gray line) under the
conditions of the twofirst equations (18)-(a), (b)). One can see that there is a single positive solution for all of the equations (18), but in
this solution the variances are negative, so the only solution in this case is the zero solution. The dashed black lines are the null clines.

Figure 13.The results ofmodel (2) as a function of time, using synchronizeMonte Carlo simulation (solid lines) andGillespie
smulation (dashed lines), A (black lines) andB (gray lines).
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The only solution of equation (18) is
s s= = = =A B 0A B0 0 , as can be seen infigure 12.

AppendixG

Two types of simulations were used: Synchroneous
MonteCarlo simulation, and aGillespiemodel.Monte
Carlo simulations of the systems studied have been
performed on one dimensional lattice. This stochastic
simulation includes a discrete number in each lattice
point, and is run in discrete space. The population size
in each lattice point was initiated in a Poisson
distribution around the initial value. At each lattice
point the probability of each reaction was computed,
and the reactions were performed according to the
prescribed probabilities. At high reaction rates, we
used a Poisson approximation. The simulation was
described in detail in previous publications
[26–29, 32, 36]. In parallel, Gillespie simulations of the
systems studied have been performed on one dimen-
sional lattice. This simulation includes discrete num-
ber in each lattice point, and is run in discrete space.
The population size in each lattice point was initiated
in a Poisson distribution around the initial value. At
each time step, the probability of each reaction was
computed, and the time to the next reaction was
drawn from the corresponding exponential distribu-
tion. The reaction with the lowest time was performed
according to the prescribed probability. The simula-
tion updating was asynchronous. The results of both
Gillespie and synchronous simulations are similar
(figure 13).
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