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Abstract. Protein variability in single cells has been studied extensively in populations, but little is known
about temporal protein fluctuations in a single cell over extended times. We present here traces of protein
copy number measured in individual bacteria over multiple generations and investigate their statistical
properties, comparing them to previously measured population snapshots. We find that temporal fluctu-
ations in individual cells exhibit the same properties as those previously observed in populations. Scaled
fluctuations around the mean of each trace exhibit the universal distribution shape measured in popula-
tions under a wide range of conditions and in two distinct microorganisms; the mean and variance of the
traces over time obey the same quadratic relation. Analyzing the individual protein traces reveals that
within a cell cycle protein content increases exponentially, with a rate that varies from cycle to cycle. This
leads to a compact description of the trace as a 3-variable stochastic process —exponential rate, cell cycle
duration and value at the cycle start— sampled once a cycle. This description is sufficient to reproduce
both universal statistical properties of the protein fluctuations. Our results show that the protein distribu-
tion shape is insensitive to sub-cycle intracellular microscopic details and reflects global cellular properties
that fluctuate between generations.

Introduction

The protein content of biological cells is a major determi-
nant of their metabolism, growth and functionality. De-
spite its important role in shaping the phenotype, it is
well established that the copy number of any specific pro-
tein varies widely among individuals in a cell population,
even for highly expressed proteins in genetically identi-
cal cells grown under uniform conditions. Often inter-
preted as noise in gene expression, protein variation has
attracted much attention, with the aim of understanding
its biological significance and as a probe of the underlying
molecular processes [1–4]. Utilizing the advancement of
single-cell experimental techniques, in particular applied
to microbial populations as model systems, protein varia-
tion was measured under a wide range of conditions [5–7].
Apart from special cases such as extremely low protein
copy number or specific circuits giving rise to bimodal-
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ity [8,9], the general characteristics emerging are that pro-
tein distributions are unimodal, broad, skewed and highly
non-Gaussian [5,7,10–13].

Many intracellular processes have been identified as
contributing to variation in protein copy number. These
include the plethora of molecular processes directly un-
derlying protein production and its regulation, but also
other more global cellular processes coupled to them, such
as metabolism and cell division. Indeed, much effort has
been devoted to characterizing these various specific con-
tributions and their stochastic nature, including gene ex-
pression [14,15], cell division [16,17], growth rate [18] and
more. Special emphasis has recently been placed on the
role of promoter architecture in protein variation, with
synthetic biology providing tools to isolate this contribu-
tion from others [19,20]. The results of these studies reveal
a range of different behaviors depending on context.

Despite much advance in identifying and characteriz-
ing specific mechanisms that contribute to protein vari-
ation, their integration resulting in the total variation of
any given protein remains poorly understood. We have re-
cently developed a phenomenological approach to investi-
gate systematically the sensitivity of protein distributions
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to underlying biological processes [11]. We have probed
the effect of an array of experimental control parameters,
known to affect protein expression in cells (different pro-
teins and different metabolic conditions), on the protein
variation. Our results showed that when viewed in appro-
priately scaled variables (subtracting the mean and divid-
ing by the standard deviation) all distributions from the
entire array of experiments collapsed to the same non-
Gaussian universal curve. The universal nature of these
distributions suggests that their shape is not dominated
by specific microscopic stochastic events. Moreover, for
all these measurements the variance scaled quadratically
with the mean, implying that a single population-average
measurement is enough to reconstruct the entire distri-
bution in physical units. The range of control parameters
leading to this universal behavior rendered this result sig-
nificant but its source and limits of validity remained un-
clear.

It is important to remember that a population of di-
viding microorganisms is not an ensemble of independent
particles, but a stochastic dynamical system far from equi-
librium: proteins and other molecules are constantly be-
ing produced and degraded; at the same time, cells con-
tinuously grow and divide and their resources are passed
along generations. The process of cell division is tightly
coupled to cell growth and metabolism and incorporates
both deterministic and stochastic components [21]. Fol-
lowing division, each cell starts its life-cycle with a pheno-
typic inheritance which provides the initial condition for
its subsequent growth. The dynamic processes of protein
production, cell division and inheritance are all crucial
components in the building up of phenotypic variation in
a population. Therefore it is of highest interest to mea-
sure these dynamics directly at the single-cell level over
multiple generations.

Nonetheless, reviewing the large literature on protein
variation one finds that practically all previous experi-
ments were carried out on large cell populations measured
at a given point in time. This provides a snapshot sam-
ple; some dynamical aspects can be probed by performing
consecutive snapshots [12,22], but direct measurements
of protein content at single-cell resolution over extended
timescales have not yet been carried out. In contrast to
statistical physical systems at equilibrium, where ergodic-
ity ensures that measurements over an ensemble are equiv-
alent to measurements over times in an individual, in a
biological population this is far from trivial and a range
of behaviors might be expected. At one limit there may be
ergodicity, with long-term measurements over a single iso-
lated cell reproducing the same distributions as in a well-
mixed cell population. At the other limit, collective effects
and sensitivity to history and environment may dominate
and lead to very different distributions in single cells over
time versus population sampling.

In this study we present protein traces measured di-
rectly in single isolated bacterial cells, using a special ex-
perimental system designed for this purpose, and followed
over extended times that cover multiple cycles of growth
and division. The extended timescale of the experiment
allows, for the first time, to collect a faithful sample of

statistical properties over time in single cells; not only low
moments but the full protein distribution can be charac-
terized for each trace separately. These data enable us to
investigate how the statistical properties of the population
at a given time relate to the long-term single-cell fluctu-
ations over their lifetime. We do this by comparing the
statistical properties of protein fluctuations measured in
our previous experiments on populations to those newly
measured in individual bacteria over time. Our goal is to
determine to what extent an individual cell samples over
its lifetime the same distribution seen in a population.
In particular, we are interested in examining whether the
universal properties of protein fluctuations reported pre-
viously for a cell population, namely universal shape in
scaled units and quadratic relationship between variance
and mean [11], are observed in the temporal fluctuations
in single cell as well. As will be shown below, we find that
the relationship between temporal and population statis-
tics is far from trivial but does contain information about
the relevant timescales and processes that play a role in
determining the fluctuations distribution.

Results

To access the temporal dimension of protein variation we
have developed a microfluidic device to trap single E. coli
cells and follow their size, division events and protein con-
tent over extended times on the order of ∼ 150 hours
(∼ 70 generations) (see fig. 1 and Methods). A similar
experimental system was used to study aging and cell di-
vision by following the dynamics of cell size [23]. Here,
we concentrate on the variation in protein content which
we can directly compare to population distributions [11].
The environmental conditions (temperature and growth
medium) are similar to our previous experiments on pop-
ulations [11] and probe the protein content in the regime
where its copy number is relatively high; genome-wide
studies in both bacteria [7] and yeast [5,6] have shown that
the majority of cellular proteins are in this regime. In the
present experiments cellular protein content was measured
by the fluorescence intensity of a green fluorescent protein
(GFP) regulated by three different promoters (see Meth-
ods for details). We are again interested in the integrated
variation as contributed from multiple cellular processes,
and we compare proteins that are metabolically relevant
with ones that do not participate in growth or metabolism.
The universal distribution in populations was found to be
insensitive to whether the protein is metabolically relevant
or simply a marker [11]. Note that, for studying variation
in one of the LAC operon proteins which are essential for
lactose utilization, it is important that the cells are grown
in a medium containing lactose as the main carbon source,
thus ensuring that the expression process is metabolically
relevant and coupled to all other cellular processes. For
comparison a foreign viral promoter is also studied.

Typical measurements of cell length and fluorescence
level reflecting protein content in a single trapped bac-
terium are shown in figs. 1C and D, respectively (see also
fig. S1 in the Supplementary Material). Comparing the av-
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Fig. 1. Experimental setup and phenotypic traces of individual trapped bacteria. (A) Schematics of the experimental setup: an
array of channels (∼ 30 µm × 1 µm × 1 µm) closed at one end and open at the other, microfabricated in PDMS, designed for
trapping individual bacteria. Fresh medium pumped through perpendicular channels feeds the trapped cells and washes out
newly produced cells. Time lapse images in phase contrast and fluorescence mode are acquired every few minutes (here 3) using
an inverted microscope. (B) A sequence of fluorescence images of a single channel with trapped bacteria at different times. The
channel extends in the y-direction and several bacteria are visible. Subsequent time points (at 30 minute intervals) extend in
the x-direction. (C, D) Temporal quantitative traces of the mother cell, trapped at the bottom of the channel, extracted from
images such as (B), for cell size (C; red dots, measured in pixels) and fluorescence of a reporter protein regulated by the LAC
operon promoter (D; green dots). An exponential xk(t) = akeαkt, 0 < t < Tk is fitted to the k-th portion between consecutive
divisions (black line).
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Fig. 2. Universal features of fluctuations in temporal protein traces. (A) Probability Density Functions (PDF) of fluorescence
levels collected from traces such as fig. 1D for 16 individual trapped cells, in which GFP is expressed from the highly induced
LAC operon promoter (blue at 30 ◦C, cyan at 28 ◦C) or the constitutive ColE1-P1 promoter (red) or the λ-phage promoter
(green). (B) Distributions of relative fluctuations for all the cells in (A): the x-axis is scaled by subtracting the mean and
dividing by the standard deviation of each trace. For comparison, the scaled population snapshot distribution is shown by a
black line (data from [11]; Lac operon promoter). (C) Variance as a function of mean for all measured protein traces. Colors
and symbols are the same for all panels.

erages of the first and second half of the trajectories shows
that there are no significant drifts along the experiments
(fig. S2). This implies that the traces are stationary and
can reasonably be used for a comparison between tem-
poral fluctuations in single cells and fluctuations across a
population in a given time. The traces clearly show the
instantaneous events of cell division and accumulation be-
tween them, which allows us to carry out below a detailed
analysis of their temporal features.

The distribution of fluorescence levels, representing the
total amount of a specific protein in the cell, are extracted
from several traces of individual trapped bacteria sampled
every few minutes for about 70 generations, are shown
in fig. 2A, including 3 different proteins at 3 tempera-
tures. It is seen that individual bacteria exhibit different
protein distributions, and in particular their means are
shifted with respect to each other. However, when plotted
in scaled units, the distributions of individual cells ex-
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Fig. 3. Protein traces as a 3-variable random process. (A) Protein traces are composed of discontinuous jumps (arrow; cell
division events), exponential accumulation between divisions (black line), and a slowly varying baseline (represented by ak). (B)
Continuous portions of the protein traces as a function of time between cell divisions (green). Time is aligned to the beginning
of the cycle; protein level is normalized to be one at this initial time. Exponential functions eαkt, 0 < t < Tk, are fitted to
the k-th cycle (black dashed lines). This plot highlights the significant variation in exponential rates αk and in cycle times Tk

among cell cycles in one trace. Accounting also for the baseline ak in the fit results in the black dashed line drawn on the data
points in (A). (C) The scaled distribution shape computed from the 3-variable process best fit to the data in each cycle, shown
here by black circles, is indistinguishable from the raw data plotted in green.

tracted from their long-term temporal dynamics, collapse
on top of one another (fig. 2B). Moreover, they depict
the same shape as the one measured for a snapshot of
a large population (black line) described in [11]. In ad-
dition, the means and variances of all traces exhibit the
same quadratic relationship previously observed for differ-
ent populations (fig. 2C). These results show that the uni-
versal statistical properties of protein variation reported in
a preceding study [11] and measured from cell population
snapshots, match the statistical properties of single-cell
protein traces along time.

The individual protein traces, such as those depicted
in fig. 1, exhibit complex dynamics with characteristics
on different timescales. Understanding the contribution of
the different features to the universal statistical properties
of protein variation is our main objective in what follows.
Careful examination of the single-cell traces (fig. 1C,D)
reveals that they are dominated by the following features:

1) Each trace is composed of continuous portions (cell cy-
cles) separated by sharp drops at cell division (fig. 3A,
arrows). At each division event, the protein copy num-
ber is divided symmetrically between the two daughter
cells (see fig. S3). Within a cell cycle, although small
fluctuations exist (partly reflecting measurement noise;
see fig. S4), accumulation is smooth and can be well

fitted by an exponential function, whose rate varies
from one cell cycle to the next (fig. 3A and B).

2) The duration of the cell cycle also varies between cycles.

3) The exponential accumulations of protein during each
cell cycle “ride” on top of a slowly varying baseline
(fig. 3A, ak’s), representing the amount of protein in
the cell at the beginning of the cell cycle following
division.

These features change from one cell cycle to the next
(see fig. S5) and can therefore contribute to the observed
variation in protein content as well as the relationship be-
tween variance and mean. To disentangle the contribu-
tions of each of these features, we generate a simplified
3-parameter representation of the protein (and cell-size)
traces

pk(t) = ak exp(αkt),

where pk(t) is the amount of the specific protein under
consideration in the cell during cycle k at time t mea-
sured from the preceding division. ak is the amount of
protein in the cell at the beginning of cycle k immediately
after division, and αk is the rate of exponential protein
accumulation in the cell during cycle k. The time t ranges
from 0 to Tk, the duration of cell cycle k. This simplified
representation of the dynamics accurately approximates
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Fig. 4. Variation in the 3-variable approximation and its effect on the universal protein distribution. The protein trace is
approximated by a collection of N exponential functions of the form {akeαkt, 0 < t < Tk}

N

k=1. (A, C, and E) Histograms of the
three parameters collected from different cell cycles in the same trace: (A) Times between cell divisions, Tk, with coefficient
of vatiaion (CV) 0.42; (B) Baseline fluorescence level at the start of the cycle ak, with CV 0.34; and (C) Exponential rates
αk, with CV 0.42. In (B, D, and F) the measured protein distribution (green) is compared to the distributions of surrogate
traces, depicted by black circles, in which each of the random variables ((B) cycle durations, (D) baseline values, (F) exponential
rates) was separately substituted by its average, and is thus constant along the trace, while the other two variables remain as
measured. The red line in (D) depicts the distribution of a surrogate trace in which the baseline was substituted by a random
value drawn from a Gaussian distribution around 1 with 0.1 standard deviation.

our measurements, and preserves the important univer-
sal statistical properties of the protein variation discussed
earlier (fig. 3C).

Using this simplified parametrization we can now
quantitatively evaluate the contribution of each of the
three parameters’ variability to the universal statistical
properties. To this end, we systematically reduce the effect
of each of these features. Initially we remove the variabil-
ity in the cell cycle durations (Tk, see fig. 4A) by setting
them all to be constant and equal to the measured av-

erage. The resulting protein trace is therefore composed
of a collection of exponentials with a baseline and expo-
nential rates that vary between cycles yet all have the
same cell cycle duration. The protein distribution result-
ing from this manipulation is depicted by the black circles
in fig. 4B and is seen to be very similar to the distribu-
tion of the original measured protein trace. The conclu-
sion from this procedure is that the variability in cell cy-
cle time contributes very little to the protein distribution
shape.
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Fig. 5. Correlation in the 3-variable process and its contribution to universal distribution shape. (A–C) Covariation of the three
pairs of random variables across cycles in individual traces. Correlation coefficients are −0.24, 0.3 and 0.31, respectively. (D)
The collection of variables measured in one trace was shuffled such that their distributions are as measured but the correlations
between their values at each cycle are destroyed.

Similarly in fig. 4D, the baseline variable (ak, see
fig. 4C) is substituted by its average, while keeping the
other variables as measured. Here, the tail of the distri-
bution is weakly affected but the lower end is modified
in a manner easily understood: if all exponential func-
tions start from exactly the same initial value, this is the
minimal value in the sample. Moreover because of the in-
creasing steepness of the exponential function, a uniform
sampling in time results in a high sampling of the lower
values of fluorescence, and the distribution will be strongly
peaked at this value. This artificial lower cut-off on the
fixed-baseline trace causes the deviation at the lower end
of the curve. To further support this claim, we add to the
constant ak a small Gaussian random value at each cycle
with a standard deviation to mean ratio of 0.1 (smaller
than the 0.34 measured), reproducing a distribution shape
very similar to the original distribution (fig. 4D red line).
This indicates that the slow transgenerational variation in
this parameter does not contribute to the shape of the dis-
tribution, and that the dissimilarity observed before when
substituting a constant for the baseline is indeed an effect
of the artificial bias induced by the substitution.

In contrast, substituting the exponential rates (αk, see
fig. 4E) by their average, while keeping the measured val-
ues of Tk and ak, changes the entire shape of the universal
distribution (fig. 4F). Neither the typical exponential-like
tail nor the rounded lower end is reconstructed by this
model. This implies that the distribution of exponential
rates among cell cycles is crucial for shaping the protein
distribution. This claim is further supported by the fact

that keeping Tk and ak constant, while replacing the mea-
sured exponential rates by random values, with similar
distribution to the measured one, leaves the protein dis-
tribution intact (fig. S6).

The analysis so far has treated each of the three vari-
ables separately; however fig. 5A–C clearly shows that
they are correlated with one another across cycles. To
test for the contributions of these correlations, we con-
struct from the measured set of variables a shuffled set,
namely: each variable separately has the same distribu-
tion but they are not matched to one another correctly.
The resulting distribution from the surrogate protein trace
is shown in fig. 5D by black circles. It is seen that, al-
though the correlations between variables are relatively
small, they affect the protein distribution shape (see dis-
cussion below). The nature of these correlations and their
significance are subject to current and future investigation
by our team.

Discussion

In studies of protein variability in cell populations, prac-
tically all experimental data were collected from single-
cell measurements in large populations at a given time.
In contrast, all models of protein variability and much
of the interpretation attached to the measurements draw
from a picture of protein dynamics along time in single
cells: bursts in gene expression, cell growth and division
along time, etc. While mRNA expression dynamics have
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been measured [24], the relevance of these measurements
to our problem is limited due to the short timescales and
the small correlation between mRNA and protein con-
tent [7]. Thus, until now no direct measurements of pro-
tein dynamics over long timescales have been analyzed to
characterize their temporal statistical properties and to
identify inheritance among multiple generations (although
in [23] a sample trace of protein density was shown). Con-
sequently the implicit question of the relation between a
cell population sample and a protein trace along time has
remained largely open. In the current study we present
such measurements for unprecedented extended timescales
and address this question by direct comparison between
these new temporal data on isolated bacteria and the cor-
responding population measurements.

The main result these data have revealed is that
the universal statistical properties reported previously for
populations of bacteria and yeast are also observed for the
temporal dynamics of protein level in a single bacterium.
Specifically, the protein distribution in scaled units has the
same characteristic non-Gaussian shape measured in pop-
ulations, and the variance shows a quadratic dependence
on the mean. These properties are shared by the entire
range of realizations shown here, including three differ-
ent proteins grown at several different temperatures. The
match between individual and population distributions in
scaled units shows that the single cell explores, within
< 70 generations, the space of relative protein fluctua-
tions with the same frequencies observed in a large pop-
ulation snapshot. The use of scaled fluctuations (common
in Statistical Mechanics) had previously revealed that the
protein distribution shape is universal in cell populations
across two microorganisms and under a broad range of
conditions. The results presented here demonstrate that
this universal distribution is a reflection of the single-cell
dynamics at least in the case of bacteria. Currently, the
lack of analogous temporal data prevents testing the gen-
eralization of this result to other cell types.

The second significant result is that the protein traces
can be accurately described by only three parameters
—the amount of protein in the cell at the beginning of
the cell cycle (ak), the rate of protein accumulation in the
cell (αk), and the cell cycle time (Tk). Thus, the entire
stochastic characteristics are accurately extracted from
random variables drawn only once per cell cycle. This rep-
resentation preserves the statistical properties, namely the
distribution shape of cellular protein content and the re-
lation between its variance and mean. It shows that the
relevant timescale for stochastic effects underlying protein
distributions of highly expressed proteins is the entire cell
cycle; on the short times between cell divisions they accu-
mulate continuously in an almost deterministic manner,
similar to the entire cell mass. This results in a timescale
separation between fast, sub-generation processes such as
transcription, translation, promoter states etc., and the
longer-term trans-generational processes. Characterizing
the entirety of intracellular processes within a cycle by a
single rate parameter does not mean that these processes
are deterministic. Rather, possibly due to their multiplic-

ity, complexity and correlations, the minimal timescale
over which significant changes appear is the entire cell
cycle; faster processes are buffered from this level of orga-
nization.

This buffering is an important phenomenon that mer-
its further study, both experimentally and theoretically,
as it lies at the heart of understanding how one level of
organization gives rise to the next level and determines
its properties and functionality. In the context of protein
variation the buffering of the fast sub-generation processes
by the slower cellular organization can account for the in-
sensitivity of the protein distributions to the intracellu-
lar processes. In addition, the observed universality of the
distributions between populations of bacteria and yeast
and across a wide range of biological realizations (differ-
ent proteins and different metabolic conditions) suggests
that similar buffering exists in yeast as well, and calls for
further investigation of this phenomenon in other organ-
isms and cell populations.

The compact parametrization of the protein trace by
three variables per cycle enabled us to evaluate the con-
tribution of each variable to the total protein variability
along the trace. It was found that among the three param-
eters, two —ak and Tk— can be substituted by constant
values with minimal effect on the resulting protein dis-
tribution. On the other hand, the existence of a range of
exponential rates is crucial for the generation of this dis-
tribution (fig. 4F); their precise values are of lesser impor-
tance. Given, however, that in reality all three variables
are random, correlations between them ensure that the
effective range of exponentials is manifested in the trace
and ensures the distribution shape. Thus it is important to
understand the origin of the smooth exponential increase
within a cell cycle, its variation from one cell cycle to the
next, and the correlations among multiple phenotypes of
the same cell.

If protein content were an isolated variable, its expo-
nential accumulation during the cell cycle would indicate
that protein production rate is proportional to its current
amount. However, our results show the same universal dis-
tribution and similar exponential accumulation for both
proteins that strongly contribute to metabolism (LacO in
lactose medium) and proteins that do not contribute (vi-
ral λ-phage promoter). The emerging conclusion is the
entanglement of cellular processes underlying protein pro-
duction leads to these dynamics, independently of the pro-
cess details. This picture is consistent with the universal
distribution found among populations in a broad range of
biological realizations and protein functionality. We fur-
ther note that recent theoretical work suggests that arbi-
trary complex networks of chemical interactions can give
rise to effective exponential growth when projected on a
single degree of freedom [25].

The entanglement of cellular processes suggests the
existence of correlations between protein production and
growth, regardless of the specific role of that protein in
metabolism. Indeed, we find that exponentials can be fit
also to the cell size dynamics of fig. 1C (fig. S7), consis-
tent with previously published microscopy measurements
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Fig. 6. Correlations between exponential rates of cell length and fluorescence. For each cell cycle, the points represent the best
fit exponential rate αk to the cell length (x-axis) and to the fluorescence (y-axis). (A) Fluorescent protein is expressed from
LacO promoter at 30 ◦C, which is metabolically relevant in the lactose containing medium. (B) Fluorescent protein expressed
from ColE1-P1 constitutive promoter. (C) Fluorescent protein expressed from the λ-phage promoter which is entirely detached
from cell metabolism. The correlation coefficients are 0.69, 0.79 and 0.66, whereas the slopes of the best linear fits are 0.97, 1.1
and 0.81, respectively.

showing that cell mass increases exponentially [26–28].
Moreover, fig. 6 shows that these exponents exhibit strong
correlation with those of protein accumulation on a cycle-
by-cycle basis for three different types of expression sys-
tems: regulated and metabolically relevant (LacO pro-
moter), constitutive and metabolically irrelevant (ColE1-
P1 promoter), and completely foreign to the bacteria (vi-
ral λ-phage promoter).

A testable prediction stemming from these results is
that the rates of accumulation of different functionally
non-related proteins within a cell cycle should be corre-
lated with one another across cycles. Although this corre-
lation is not expected to be uniform for all protein pairs,
nevertheless it should extend beyond the level of specific
regulatory modules to include correlations through the
global metabolic network. Previous work has measured
genome-wide pair correlations in yeast in snapshot mea-
surements that sample the individual cells at different cell
cycle stages [29]. The correlations are expected to be much
stronger between the rates of production that represent
the metabolic state of the cell throughout the entire cycle.
These predicted pair correlations are expected to break
down for low copy number proteins which might then be-
come sensitive to a specific intracellular process, such as
transcription or translation.

Finally, our measurements show that the mean fluo-
rescence for each trace, which reflects the average protein
content in the cell over the measurement time, is different
from cell to cell. Because of the long timescales associ-
ated with modulations of the average, and because our
measurements are in arbitrary units, further experiments
are required to calibrate its absolute value and to col-
lect sufficiently large statistical samples to verify this in-
dividuality and clarify its source. Previous work has shown
that slowly varying population averages exhibit non-trivial
dynamics that can be highly significant biologically [30–
32]. The question of these slowly varying fluctuations, and
in particular the relation between temporal and popula-
tion fluctuations in this non-universal regime, therefore
remains a topic of high interest for future investigations.

Methods

Experimental setup and data acquisition

Wild type MG1655 E. coli bacteria, expressing green
fluorescent protein (GFP) from a medium copy number
plasmid (∼ 15) under the control of the regulated Lac
Operon (LacO) promoter, or the constitutive ColE1-P1
promoter, or the viral λ-phage promoter, were grown over
night at 30 ◦C, in M9 minimal medium supplemented with
1g/l casamino acids and 4g/l lactose (M9CL, for cells ex-
pressing GFP under the control of LacO), or 4g/l glu-
cose (M9CG, for cells expressing GFP under the con-
trol of ColE1-P1 or λ promoter). The following day, the
cells were diluted in the same medium and regrown to
early exponential phase, Optical Density (OD) between
0.1 and 0.2. When the cells reached the desired OD, they
were concentrated into fresh medium to an OD ∼ 0.3,
and loaded into a microfluidic trapping device. The de-
vice consisted of multiple channels of 50 or 30µm long,
with 1µm width and 1µm height. The channels were
closed at one end and open at the other, where large
(30 × 30µm) channels cross them perpendicularly (see
fig. 1). The cells were allowed to diffuse into the narrow
channels and fresh M9CL (or M9CG for ColE1-P1 and
λ promoter) medium was then flown through the large
perpendicular channels to supply the thin perpendicular
channels with nutrients to support the growth of trapped
cells (fig. 1A). The cells were allowed to grow in this device
for ∼ 70–100 generations, while maintaining the temper-
ature at the required temperature, using a made-in-house
incubator. A similar setup was developed independently
by another group and used to follow cell size in other
studies [23].

Images of the channels were acquired every 3 minutes
in phase contrast and fluorescence modes using a Zeiss
Axio Observer microscope with a 100× objective. This
resolution ensures a continuous measurement relative to
the typical timescales of change in both cell size and pro-
tein content, while minimizing the damage to the cells.
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The size and protein content of the mother cell (the cell
at the closed end of the thin channel) were measured from
these images using the image analysis software Microbe-
Tracker [33]. These data were then used to generate traces
such as those presented in figs. 1C and D, and for further
analysis as detailed in the main text.

Parametric representation of protein traces and the ef-
fect of the different parameters

Traces of the total fluorescence in individual cells as a
function of time were obtained from the acquired im-
ages. In each trace, the division points were identified and
the time difference between two consecutive divisions was
computed to find the cell cycle time (Tk). The total flu-
orescence values between each two divisions were fit to
an exponential function using two fitting parameters: the
amount of protein at the beginning of each cycle (ak),
and the rate of exponential accumulation of protein (αk).
These parameters were then used to reproduce the surro-
gate traces and calculate their statistical properties in or-
der to compare to the statistical properties of the data. To
assess the effect of each parameter on the statistical prop-
erties of each trace, new surrogate traces were produced in
which the parameter(s) of interest (either Tk, ak, or αk),
which naturally varies between cycles, was replaced with
a constant equal to its average along the trace. The other
parameters were kept as obtained from the original fit,
and the resulting new trace was used to calculate the new
statistical properties and compare to those of the original
data.
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