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a b s t r a c t

Phenotypic variability in a microorganism population is thought to be advantageous in fluctuating
environments, however much remains unknown about the precise conditions for this advantage to
hold. In particular competition for a growth-limiting resource and the dynamics of that resource in the
environmentmodify the tradeoff between different effects of variability. Herewe investigate theoretically
a model system for variable populations under competition for a flowing resource that governs growth
(chemostat model) and changes with time. This environment generally induces density-dependent
selection among competing sub-populations. We characterize quantitatively the transient dynamics in
this system, and find that equilibration between total population density and environment can occur
separately and with a distinct timescale from equilibration between competing sub-populations. We
analyze quantitatively the two opposing effects of heterogeneity – transient response to change, and
fitness at equilibrium – and find the optimal strategy in a fluctuating environment. We characterize the
phase diagram of the system in term of its optimal strategy and find it to be strongly dependent on the
typical timescale of the environment andweakly dependent on the internal parameters of the population.

© 2012 Elsevier Inc. All rights reserved.
0. Introduction

The connections between spatial and temporal variation of
environments and the corresponding variation of organisms
inhabiting them is a fundamental problem in biology. Beyond
and in addition to specialized mechanisms that organisms use to
cope with varying environments, it has been proposed many years
ago that maintaining a component of phenotypic variability can
be a good strategy if the environment is unpredictably changing
(Cohen, 1966; Levins, 1968; Lenormand et al., 2008). Much
research was performed in order to understand the adaptive value
of different stochastic behaviors, both theoretically and empirically
(Meyers andBull, 2002). At the population level, this adaptive value
is manifested when maintaining a random heterogeneity induces
a higher long-term fitness than any homogeneous state of the
population. This effect, known as bet hedging, has been extensively
studied both theoretically and experimentally, but still remains
under much debate (Meyers and Bull, 2002; Simons, 2011).

Early work on bet-hedging considered discrete generations,
and studied models in which the stochastic process describing
variable behavior was uncorrelated (e.g. ‘‘adaptive coin flipping’’,
Cooper and Kaplan, 1982). However, the effect of bet hedging
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as a population strategy depends strongly on the dynamics and
characteristic timescales of the variable phenotype, which is in
turn related to the modes of heritability. Natural environments
are variable in many dimensions and over multiple timescales;
biological variation arises by multiple mechanisms at all levels of
organization multiple timescales (Rando and Verstrepen, 2007).

The accumulating evidence on multiple timescales in genetic
and epigenetic inheritance was suggested to be a substrate for
timescale selection in phenotypic switching models (Lachmann
and Jablonka, 1996). These authors showed that switching
between phenotypes can be advantageous in a slowly varying
environment, and furthermore that the optimal switching time
is proportional to the typical timescale of the environment.
This result was later shown to hold for a more general model
of n phenotypes and m environments (Jablonka et al., 1995;
Kussell et al., 2005). Others (Wolf et al., 2005) considered the
yet more general case which includes imperfect cellular sensing
mechanisms, and showed that heterogeneity can be selected by a
time varying environment if the sensing mechanism is unreliable
or slow. Moreover, even if it is not an optimal strategy in terms
of growth rate, dynamic heterogeneity can decrease growth rate
variance and thus the probability of extinction.

When analyzing dynamics and growth strategies of microbial
populations it is important to take into account feedback from
the environment. Typically microorganisms compete for common
resources, deplete those resources and their abundance feeds
back onto their growth. This can be described in models as a
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population-density-dependence of the dynamics (Mueller, 1997,
although there can be other sources of density dependence such
as spatial crowding). How exactly one should model density-
dependent selection in population dynamics has been the topic of
much research and debate (Asmussen and Feldman, 1977; Boyce,
1984). The abovementioned previous studied on bet hedging have
assumed that growth rate difference is constant and therefore
there was no density-dependent selection.

Our purpose in the present study is to extend the formulation
of evolutionary bet hedging to include the effects of density
dependence through the competitive depletion of a resource, using
a simple model system based on the dynamics of a chemostat. In
the chemostat, growth is limited by a resource (usually a nutrient
component of the medium) and takes place under continuous
flow. Cell density and resource concentration are tightly coupled:
increase of the cell density depletes the resource, which in
turn decreases the growth rate. Different cell states, or species,
that proliferate in this system compete with one another for
the limiting resource, generally by density-dependent selection.
This is because the dependence of growth on resource generally
causes the growth-rate difference to change in time through
the dynamics of the resource. (An exception occurs if the two
functions differ strictly by a constant.) For infinitely heritable
states, asymptotically mutual exclusion occurs, with the more
efficient state inhabiting the chemostat (Smith and Waltman,
1995); for a finite inheritance time, or a nonzero switching rate
between states, states can coexist. The chemostat imposes on the
problem a natural time scale, so that the population needs to
keep up with the wash rate and cannot grow arbitrarily slowly.
Thus cell states that are not fit enough do not survive in the
competitive environments. These dynamic properties modify the
tradeoff involved in bet-hedging: on one hand, there is less
tolerance to the maintenance of species that are less fit; on the
other hand, density-dependent effects canmodify the efficiency of
selection of a small subpopulation.

The chemostat is an experimental tool which enables to bring
evolution into the lab for quantitative long-term investigation
of fundamental questions in evolution and evolvability (Dunham
et al., 2002; Stolovicki et al., 2006; Stern et al., 2007). It is also
a device of technological importance. From the theoretical point
of view it serves as a simple model for an environment with
competition for a flowing resource such as a lake or pond. It
incorporates density-dependent selection in a continuous growth
model in a natural way and avoids complications and instabilities
often met by discrete population models. Theoretical work on the
chemostat has focused almost exclusively on asymptotic analysis;
however, in the face of a fluctuating environment asymptotic states
are not reached and it is important to understand also the transient
dynamics. Therefore this work is composed of two stages: we first
establish some general results about the transient dynamics of
competing populations in a chemostat, including a quantitative
description of dynamic trajectories and analytic estimates of the
relevant time scales. Second,we utilize these results to analyze and
assess heterogeneity strategies available for amicrobial population
in a changing environment in a chemostat.

1. Transient dynamics of takeover

The appearance of a species or sub-population better-fitted
than the resident one generally causes it to become dominant.
In a chemostat, where the environment induces selection by
competition for resource and washout, this eventually results
in mutual exclusion (Smith and Waltman, 1995). In this section
we describe the transient dynamics of this process and provide
quantitative estimates for its characteristic time scales. We show
that equilibration between the two competing sub-population and
between populations and environment are separate processes that
can occur on distinct time scales. For related recent results seeHajji
and Rapaport (2009).

Imagine a population of density u, whose growth rate depends
on a resource ζ through the nonlinear function µ1(ζ ), is growing
at steady state in the chemostat. A second species v with growth
curve µ2(ζ ) and with the same yield appears in small amounts
within the environment. We assume that the number of invading
cells, although very small relative to the equilibrium density, is
large enough to ignore stochastic effects and drift (Gillespie, 2004;
Desai and Fisher, 2007). The dimensionless equations governing
the dynamics are

dζ
dt

= 1 − ζ − µ1(ζ )u − µ2(ζ )v

du
dt

= (µ1(ζ ) − 1) u

dv
dt

= (µ2(ζ ) − 1) v

(1)

with µ1(ζ ) and µ2(ζ ) general nonlinear monotone increasing
functions. The fixed points for this system are the empty state
(ζ ∗, u∗, v∗) = (1, 0, 0), an unstable fixed point (µ−1

1 (1), 1 −

µ−1
1 (1), 0) corresponding to the subdominant species inhabiting

the chemostat, and a stable fixed point (µ−1
2 (1), 0, 1 − µ−1

2 (1))
with only the dominant species (see Appendix B). Dominance
in the chemostat is determined by the lowest value of µ−1(1),
the steady-state value of the limiting nutrient concentration. In
general this is not necessarily the highest maximal growth rate.
However, in what follows we shall assume a constant nutrient-
independent selection coefficient s such that µ2(ζ ) = sµ1(ζ ); in
this case the dominant species is indeed the one with the highest
maximal growth rate. It is noted that this relation between growth
functions induces density-dependent selection between the two
types, as does any other arbitrary choice of growth functions
except for the special case of µ2(ζ ) = s + µ1(ζ ).

While the asymptotic result of mutual exclusion is a well-
known corollary of the above described fixed points, we are
here particularly interested in the transient dynamics that lead
to it. Fig. 1 illustrates the dynamics of takeover displayed as the
trajectories over time (1a,1c) and in the (u, v)-phase plane (1b,1d),
for two sets of parameters corresponding to small (s = 1.08;
1a,1b) and large (s = 2; 1c,1d) selection coefficients. The transient
dynamics in both cases start with an invasion phase, where the
invading population is still a small minority and has a negligible
effect on the nutrient concentration in the environment and on
the density of the resident population. After this initial phase the
dynamics differ for the two sets of parameters. For small selection
coefficient, Fig. 1(a) shows a second, takeover phase, in which
the invading population takes over in terms of composition, and
the environment adjusts itself accordingly on a similar time scale.
The picture in the phase plane (u, v), is illustrated in Fig. 1(b),
where it is seen that the trajectory forms nearly a straight line. In
contrast, Fig. 1(c), (d) show that for a large selection coefficient the
dynamics is composed of three distinct phases. The first two are
similar to those of Fig. 1(a): an initial invasion phase and a takeover
phase in which all dynamic variables are changing simultaneously.
However here the total population and environment decay quickly
to their equilibrium values, and a third phase appears in which
the population internal composition relaxes on a slower timescale.
In the (u, v), plane the two takeover phases are reflected by two
different slopes. Phase III, the population equilibration phase, is
characterized by a trajectory which is near the line u + v = const
(illustrated by a dashed line in the figure).

During the invasion phase, the population is composed almost
entirely of the resident population and the environment is nearly
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Fig. 1. Transient dynamics of takeover in the chemostat for small (a,b) and large (c,d) selection coefficient. In (a,c) the dynamical variables are plotted as a function of time:
concentrations of resource (solid red line), resident species (dotted line), invading species (dashed line) and total population (solid blue line). In phase I the resource is still
controlled by the resident population. At low selection coefficient (a), phase II is the takeover phase where all dynamical variables equilibrate on similar timescales. A large
selection coefficient drives a rapid equilibration between the total population and the environment (c, phase II), and then a slower equilibration continues between the two
competing species (phase III). In (b,d) the same trajectories are shown in the phase plane of the two species. (Parameters: Monod growth functions with α1 = 1.2, κ = 0.1;
selection coefficient s = 1.08 or 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
constant at ζ ∗, and thus the invading population v approximately
satisfies

dv
dt

=

µ2(ζ

∗) − 1

v = (s − 1)v (2)

and grows exponentially with a rate known as the invasion
exponent (Diekmann, 2003): v(t) ≈ v0 exp{[µ2(ζ

∗) − 1]t}, until
reaching a threshold where it starts to affect the environment.
Defining the end of the invasion phase by a threshold on the final
fraction θi of the invading population relative to the resident one,
we can estimate the invasion time as v0 exp{[µ2(ζ

∗) − 1]t} =

θi(1 − ζ ∗), giving

tinv =

ln


θi
ν0

(1 − ζ ∗)


µ2(ζ ∗) − 1
=

ln


θi
θ0


s − 1

(3)

where θ0 is the initial fraction of the invading population. Thus the
invasion time is inversely proportional to the difference in growth
rate between the resident and invading populations at the initial
environment (by definition the resident population has a growth
rate of 1 at its steady state). In this part of the dynamics, since the
change in and in total density is negligible, the result is identical to
that of two populations with a fixed growth rate difference.

In the second phase of dynamics, the invading population
is starting to detectably diminish the growth resource in the
environment and this, in turn, affects the populations’ growth
rates. This can be viewed as a density-dependent selection where
the frequency dynamics are governed by a time-varying growth
rate difference. Although the dynamics of density and frequency
are coupled they do not necessarily have the same characteristic
time scale; observation of Fig. 1 shows that in the first case of
small selection coefficient, the substitution of the resident by the
invading species takes place at the same time as the environment
adjusts itself to the new steady state value. By contrast, a
large selection coefficient induces a separation between these
times, as the environment equilibrates first and then competition
and substitution takes place while the environment and total
population are approximately at steady state.
The ‘‘frequency takeover time’’, defined as the time it takes the
invading population v to change from an initial small fraction θi to
a final fraction θf = 1 − θi, is given by (Appendix B)

tfreq =
s + 1
s − 1

ln

1 − θi

θi


− ln


v∗

u∗


, (4)

where u∗, v∗ are the equilibrium densities of the resident
population before and after invasion. The main feature of this
expression is that it decreases very slowly and is bounded from
below with increasing selection coefficient s. Thus the final stage
of the ‘‘selective sweep’’ is governed by the washout rate and not
by the selection coefficient. This is shown in Fig. 2 (circles), and is
contrastedwith the takeover time in an open system (dashed line).

At large selection coefficient s, a considerable adjustment of
the environment is required, and the transition from one fixed
point to the other involves a large change in ζ ∗. As seen in
Fig. 1(c), (d), equilibration between the total mixed population and
the environment takes place first, and then there is an internal
process of substitution between the two cell types. Since the total
population density is both an observable quantity and one that is
associated with fitness (see below), it is of interest to estimate the
typical time it takes the total population to reach its equilibrium
value. In terms of Fig. 1 we are interested in estimating the time
till the end of Phase II. Our estimate is based on the structure of
the trajectories in phase space, which are composed of two parts
associated with phases II and III of the dynamics; for details see
Appendix B. The ‘‘density takeover time’’ is found as

tdens ∼=
1

s − 1


− s ln


1 −

1ζ ∗

u∗
β


+ ln


1 −

1ζ ∗

u∗θi
(1 − β)


(5)

where β = η1/(1 − η2) and η1, η2 are parameters determining
the eigenvalues of the Jacobian matrix at the unstable fixed point.
This estimate is shown in Fig. 2 (squares) together with the
numerical calculation of the takeover time (corresponding solid
line). The expression inside square brackets is weakly dependent
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Fig. 2. Takeover timescales in the two species problem. An invader population
with selection coefficient s starts from an initial small relative concentration θi .
Two characteristic timescales of the transient dynamics are plotted: frequency
takeover time – the time for the invader population to reach a threshold relative
concentration θf (exact expression in chemostat – circles, numerical solution –
corresponding dotted line), and density takeover time – the time for the total
population, resident + invader, to reach θf of its equilibrium value (computed
by eigenvector method – squares, numerical solution – corresponding line, see
Appendix B). For comparison, the takeover time for an open systemwith no limited
resource, defined by relative concentrations, is shown (dashed line). θi = 0.01, θf =

0.9.

on s and therefore the dependence of the takeover time can be
approximated as c/(s − 1), where c is a constant. This time has
a functional form similar to the invasion time or the takeover time
(which are the same) in an open system (see Fig. 2).

In summary, the two-species dynamics in a chemostat can
be characterized by two timescales characterizing the frequency
and density dynamics, which can be distinct despite the coupling
between them. While the first is limited from below by the typical
chemostat time, the second decreases rapidly with selection
coefficient. Thus for large s, although the frequency takeover time
decreases, it does so very slowly and a much more dramatic effect
is found in terms of the density takeover time. The total population
reaches equilibrium with the environment first, and then the
different sub-populations equilibrate to obtain the equilibrium
population composition. In the parameter range presented in Fig. 2
the two timescale can differ by almost an order of magnitude. This
two-stage transient dynamics can be significant from the point
of view of population survival and fitness: following a change
in environment the total population may establish its stability
very rapidly thanks to the existing variability, although the more
fit species will take longer than this to actually take over the
population in terms of its composition.

2. Phenotypic switching in the chemostat

Phenotypic traits that affect microorganism growth are not
perfectly inherited, and can have correlation times ranging from
less than a generation to several generations (Lord and Wheals,
1980; Sigal et al., 2006). In preparation for our main goal of
investigating the dynamic heterogeneity of a chemostat with a
varying environment, we present here for completeness the main
results for a chemostat in a constant environment but with finite
transitions between two states. These transitions ensure that
heterogeneity remains and is not lost by selection.

Wemodel the finite stability of the cellular states by first-order
transitions between them, with rates γ1, γ2:
dζ
dt

= 1 − ζ − µ(ζ )u − sµ(ζ )v

du
dt

= (µ(ζ ) − 1) u − γ1u + γ2v

dv
dt

= (sµ(ζ ) − 1) v + γ1u − γ2v.

(6)

The dynamical system (6) with nonzero γ1, γ2 admits only one
nontrivial fixed pointwhich is a coexistence state. As the transition
rates decrease to zero the system goes through a bifurcation, the
coexistence states disappears and a pair of fixed points, one stable
and one unstable, emerge; this is mutual exclusion. For small
transition rates, the structure of phase space is affected by the
vicinity of the bifurcation point, the ghost of the unstable fixed
point distorts the trajectories and they spend a long time near it
(see Appendix C).

The coexistence fixed point for the system with nonzero
transition rates can be characterized by the ratio of concentrations
p(s, γ1, γ2) = u∗/v∗ (see Appendix C). The fraction of the fitter
state in the total population is expressed as f = 1/(p+1), whereas
the fixed point value of the resource, ζ ∗, satisfies the following
implicit equation

µ(ζ ∗)
p

p + 1
+ sµ(ζ ∗)

1
p + 1

= µ(ζ ∗)
p + s
p + 1

= 1. (7)

This equation defines an equilibrium growth curve s̃µ(ζ ) for the
total population, such that ζ ∗

= µ−1(1/s̃), where s̃ ≡ (p +

s)/(p + 1). For a Monod growth function, µ(ζ ) =
αζ

ζ+κ
, the

limiting resource and population concentrations at steady state as
a function of the ratio p can be found explicitly:

ζ ∗
=

κ

s̃α − 1
. (8)

It is of interest to compare the fixed point of this dynamically
heterogeneous population to that of a freely growing population
with constant growth rates. Here a fixed point is not reached but
the fractions attain a limiting value. Denoting the free growth
rates by µ and sµ and the switching rates as before by γ1, γ2, we
compare the limiting fraction f at small transition rates and as a
function of selection coefficient. For the open system the fraction
can be approximated as

f ≈ 1 −
γ2

µ(s − 1)
, (9)

whereas in the chemostat we find

f ≈ 1 −
sγ1

s(1 + γ2 + γ1) − (1 + γ1)
. (10)

It is seen that for large selection coefficient the fraction of favored
cells approaches unity in the open system while in the chemostat
it is bounded by a function of the transition rates, as illustrated in
Fig. 3. This can be understood by the fact that near equilibrium the
favored type has a selective advantage of 1 − 1/s, whereas in an
open system this advantage is always proportional to (s − 1).

3. Fluctuating environments

Wenow combine the results of previous sections to address the
main point of this paper: phenotypically switching organisms in a
fluctuating environment chemostat. We consider an environment
which switches between two possible states E1 and E2, forming
a sequence, either periodic or random in time. The cells in the
population have two possible cell states, each better fitted to
one type of environment and suffering a decrease in growth in
the other environment. In the simplest case there is symmetry
between the two states in the two environments. This model was
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Fig. 3. Fraction of faster-growing cells in a population at equilibrium with
symmetric transitions between the two types. In an open system with unlimited
resource (squares), this fraction approaches unity for large s. Competition for
resource limits this fraction: in a chemostat (circles), it approaches a maximal
fraction smaller than one that depends on the transition rates. Parameters: µ =

1.2, κ = 0.1, γ1 = γ2 = 0.1. Symbols denote numerical computationwhile dashed
lines are the approximations given in the text.

studied in previous work on unlimited environments (Lachmann
and Jablonka, 1996; Thattai and Oudenaarden, 2004; Kussell and
Leibler, 2005; Donaldson-Matasci et al., 2008). The model of
Eq. (6) describes similarly a two-state systemwith competition for
a limited resource, if it is understood that once the environment
changes state the roles of the two states are switched. To analyze
the population dynamics we must now address the subtle issue of
defining fitness of the population.

For populations in an open unlimited environment, fitness is
usually defined by the mean growth rate in the population. If
f denotes the fraction of cells in the faster growing state, with
specific growth rate µ2, then this mean growth rate is fµ2 +

(1 − f )µ1. This is a monotonic function of the fraction f , and
therefore maximizing fitness is here equivalent to maximizing
f . In a chemostat the situation is quite different: at equilibrium
the net growth rate is determined externally by the washout
rate. In transient states, instantaneous growth rate is tightly
coupled to the instantaneous concentration of limiting nutrient in
the system. The question of what microorganism metabolism is
optimized for (if at all) is a nontrivial question (Schuetz et al., 2007).
Under conditions of nutrient limitation, it has been suggested that
metabolism is optimized for quantities related to total biomass
production. Thismeans viewing the total biomass as an indicator of
fitness, and under varying conditions—the biomass averaged over
time. Considering also that in a finite population a small amount
of biomass increases the probability of extinction, it is further
reasonable to adopt this measure of fitness, as we do in what
follows.

Among the strategies available to the population in the face of
a changing environment, there are those that involve sensing the
environment and those that do not (Wolf et al., 2005).We consider
first the case where there is no sensing mechanism, and ask under
what conditions blind bet-hedging, or ‘‘coin flipping’’ (Cooper and
Kaplan, 1982), can increase fitness. Thenwe consider a response to
the environment that incurs a delay time and ask whether a biased
bet-hedging can improve on a delayed response mechanism.
No sensing: pure strategy vs. random transitions.

If the cells do not have any sensing mechanism, the transition
rates are independent of the environment and for simplicity can
be assumed the same in both directions (γ1 = γ2 = γ in Eq. (6)).
Fig. 4. Population fitness with random switching (equal transitions between
the two states). Population fitness – time-averaged density – is plotted as a
function of transition rate γ in a periodically changing environment with period
τ . For environments that change slowly enough an optimal value for the random
transition rate emerges. The approximation described in the text, taking into
account the tradeoff between steady-state mixture effects and transient recovery,
is shown as a dashed red line. Parameters: α1 = 1.2, κ = 0.1, s = 2. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The pure strategy, where cells remain in the same state at all
environments despite loss of fitness in some of them, is obtained
as the limit γ1 = γ2 = 0. Under what conditions is it better
for the population to have a nonzero transition rate between the
two states, even though these transitions are completely random?
Fig. 4 shows the population fitness in a periodic environment with
random transitions between two states, computed by numerically
solving the Eqs. (6) with a periodically changing environment with
different periods τ . The fitness is plotted as a function of the
transition rate γ , and it is seen that if the environment changes
slowly enough there exists an optimal nonzero transition rate
which induces a maximal fitness.

Using the results of the previous sections, for a slowly changing
environmentwe can qualitatively analyze the tradeoff which leads
to the nonzero optimal transition rate. The assumption of slow
variation implies that in each environment the system is allowed
to relax close to its equilibrium. After this relaxation, transitions
cause a mixture of the two states and thus fitness decreases; this
effect becomes more severe as the transition rate increases due to
a larger equilibrium ratio p of disfavored cells. On the other hand,
once the environment changes, the samenear-equilibrium fraction
of previously disfavored individuals will take over and adjust the
population to the new situation. Here fitness will increase with γ
since the initial condition for the takeover dynamics will be more
favorable at large γ . It is clear from these considerations that the
optimal solution will depend on the frequency of environment
changes relative to the times of transient dynamics. Fig. 5 shows
for illustration some typical trajectories in a periodic environment
with τ = 10 and different values of transition rates.

These arguments show that p(γ , s), the ratio between cell types
at equilibrium, is a key factor affecting the tradeoff. We use it to
quantify the mean fitness over many periods of the environment
and to predict the optimal transition rates. For a Monod growth
function, the total biomass at equilibrium is

u + v = 1 − ζ ∗
= 1 −

κ

s̃(s, γ )α − 1
, (11)

where we recall that s̃ = (p(γ ) + s)/(p(γ ) + 1). This contribution
to fitness, a slowly decreasing function of γ , will be significant
for high transition rates. It will have a stronger effect for slower
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Fig. 5. Dynamics in a time-periodic environmentwith different transition rates among states. The environment switches between two states every 10 time units. Trajectories
are shown for two periods after a long time such that a time-varying steady state has been reached (left column), and corresponding trajectories following environment
change are traced in phase–space (right column). (Top) Very small transition rates γ = 10−4 . At the end of a stretch of constant environment, the sub-optimal sub-population
decreases to a very low concentration; see for example the dashed line (v) at t = 120. This is reflected in phase space by a coexistence fixed point very close to the boundary
where v = 0 (red dot in right column). After a long time in this environment the trajectory comes near this coexistence point. Upon environment change, the characteristics of
the two states are interchanged and the new coexistence fixed point is close to the other boundary u = 0 (black dot). The red dot is now the initial condition for convergence
to the black dot. The proximity of this initial condition to the boundary and thus to the stable direction of the ‘‘ghost’’ unstable fixed point corresponding to γ = 0, forces
the trajectory to move through large ς regions of the plane. Since the plane u + v + ς = 1 is invariant under the dynamics, this portion of the trajectory causes a fitness
decrease. (Middle and Bottom) As γ increases, the coexistence fixed points move away from the boundaries and the trajectories flow between the old and new fixed points
more smoothly; the effect of the ghost unstable fixed point disappears. Parameters: µ = 1.2, κ = 0.1, s = 2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
environments where a larger fraction of the time is spent near
equilibrium.

The other side of the tradeoff, the loss of fitness due to transient
dynamics upon environment change, is most important for small
transition rates. In this region it is primarily determined by the
initial conditions of the previous equilibrium and by the selection
coefficient s; the takeover time to reach the new steady state can
be approximated as (Appendix C)

ttk ∼= −
(s + 1)
(s − 1)

ln p. (12)
Now suppose that the environment is changing periodically,
spending a time τ in each state. In a symmetric model, where the
two states exchange role in the two environments, the average
biomass in a period is approximately

⟨f ⟩ ≈
τ − ttk

τ
(1 − ζ ∗) +

ttk
τ

ε(1 − ζ ∗)

= (1 − ζ ∗)


1 +

ttk
τ

(ε − 1)


, (13)

where ε is an effective parameter measuring the average fitness
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Fig. 6. Symmetric transition rates that maximize mean population fitness in a
periodic environment. The optimal transition rate dependsweakly on s, but strongly
and approximately inversely on environmental period.

during the transient period. This expresses the fitness as a product
of two terms, both of which depend on γ through p: the first is
the equilibrium fitness and the second describes the transient. In
terms of the ratio p, the equilibrium population density (1 − ζ ∗)
decreases slowly whereas the second one increases rapidly, as (−)
the logarithm of the equilibrium ratio

⟨f ⟩ ≈

1 −
κ

p+s
p+1


α − 1

1 +
(1 − ε)

τ

s + 1
s − 1

ln p


. (14)

This approximation is depicted by a dashed line in Fig. 4 for the
slowest environment. It is seen that the two contributing factors
– one decreasing and one increasing as a function of γ – give
the quantitative description of the tradeoff of bet-hedging in our
model.

The calculated optimal transition rate dependsmost strongly on
the environment period τ , and weakly on the selection coefficient
s. This is illustrated in Fig. 6. The dependence on τ is approximately
inverse, similar to results found for an open system (Lachmann and
Jablonka, 1996; Kussell and Leibler, 2005). All the results presented
in Figs. 4–6 are found to hold also for an environment which
changes randomly between its two states, according to a Poisson
process with a rate 1/τ .

As discussed above, the definition of fitness thatwehaveused to
formulate the optimization problem for the population dynamics is
somewhat arbitrary. In general other properties of the population
can affect its survival, for example the minimum number of cells
strongly affects the probability of extinction.We have seen in Fig. 5
that the population density reaches its minimum shortly following
the environment switch due to the abrupt change in state of the
dominant resident population. Howwould this result change if we
allowed the environment a gradual change of its state, as is more
realistically the case in nature?

To answer this, we modified the model described by Eq. (6)
to include a smooth change in environment rather than a step-
function change. The time scale of this smooth change, τsm, is
taken to be slightly shorter or similar to the environment switching
timescale. The transient dynamics following such an environment
change are depicted in Fig. 7 for three values of τsm. The effect
on the population trajectory is significant in terms of the minimal
density reached; it becomes filtered for longer internal transition
timescale, as can be expected. In terms of phase space trajectories,
the ghost fixed point no longer has such a strong effect, because
the dominant population does not become immediately unfit but
rather both sub-populations have intermediate properties.

Using this modified model and computing again the time-
averagedpopulationdensity does not change thepicture presented
in Fig. 4 (data not shown): the minimal density increases but the
transient takes longer to recover. Thus in terms of the long-term
fitness defined above, there is little sensitivity to the gradualness
of the environment change. However this result shows that the
internal population structure can change dramatically while the
total population density remains almost constant. This property
can buffer the population over times where its internal structure is
being modified to account for external changes, and decrease the
amount of time where it suffers an extremely low density and is
subject to high extinction probability.
Environment-dependent transition rates.

If cells can sense the environment, they can in principle induce
a transition towards the more fit state in each given environment.
The extreme limit of this situation is when each environment
immediately defines all cells to be in the more fit state. More
generally even if there is sensing that can bias the transitions in
this way there remains a delay in the transition itself, that is most
simply modeled by first order kinetics with different forward and
backward transition rates. At the level of the population, this is
described by the model of Eq. (6) with γ1 > γ2.

It is quite obvious that if the population can set the forward
transition (from the unfit to the fit state) to be high enough, this
will increase fitness. However, somewhat less intuitively, for a
given forward transition rate, setting the backward rate nonzero
can sometimes enhance fitness (Thattai and Oudenaarden, 2004).
Stating this in different words, given that the induced transition
has a speed limitation, an additional factor of dynamic heterogene-
ity can enhance fitness. To test whether this phenomenon occurs
also in ourmodel, we computed numerically the population fitness
for a given forward transition rate as a function of the backward
rate, see Fig. 8. It is seen that for a slow enough environment in-
deed there is amaximal fitness at a nonzero value of γ2. The fitness
as a function of both transition rates is shown in Fig. 9; this plot
shows similar characteristics for both periodic and random envi-
ronment time sequences. Indeed, if the forward transition rate is
high enough the optimal value of the backwards transition rate is
zero (top left corner of the square). However for smaller values,
there is a clear nonzero value of backward rate which optimized
the fitness, and this value of almost constant before it decreases
rapidly to zero. Thus the optimal value of the back-transition rate
is weakly dependent on the forward transition rate. This plot can
therefore be characterized by the crossover value of the forward
transition rate for which dynamic heterogeneity can provide addi-
tional fitness to the population, the critical γ1. The dependence of
this critical γ1 on other system parameters (s, τ ), is summarized in
Fig. 10.
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Fig. 7. Slower changes in cell state induce milder fluctuations in total population. The model presented in Eq. (6) was modified to include a gradual change of environment
with a typical timescale τsm . The transient dynamics following an environment change at t = 0 is depicted in the left column and the corresponding phase space trajectories
on the right column. It is seen that as the environment change of state becomes more gradual, the trajectory remains closer to the line u + v = constant. The population
density time-averaged over the entire transient remains practically unchanged (not shown). Parameters: µ = 1.2, κ = 0.1, s = 2, γ = 10−3 .
4. Summary and discussion

The idea of bet hedging as an adaptive population property
that enhances fitness and survival in a fluctuating environment
has been studied for many years (Meyers and Bull, 2002; Veening
et al., 2008; Simons, 2011). Here these ideas were investigated
in the context of a dynamic model with competition for limited
resource, the chemostat model. The dynamics of the environment
and the two-way interaction between the population and its
growth-limiting resource induce a density-dependent component
to the problemwhich can in principlemodify the tradeoff involved
in bet-hedging. While density-dependence has been introduced in
many populationmodels, much debate has taken place concerning
the correct functional form of this dependence and its effect on
population stability and evolutionary outcome (Asmussen and
Feldman, 1977). In this respect the chemostat model provides a
natural, continuous way to describe density-dependence, which is
induced simply from the consumption of resource under flow in
the environment and from the difference in growth functions. The
chemostat as a dynamical system has been the subject of much
research, but this had focused almost exclusively on long-term
asymptotics and not on transient dynamics. Recently it was found
that if the difference in properties of the competing species is small,
the timescale to reach mutual exclusion can be exceedingly long
(Hajji and Rapaport, 2009). When the environment is changing it
is important to understand the transient dynamics under general
conditions.

We have characterized the transient dynamics of takeover
among competing species in terms of two separate time scales
of takeover: the frequency takeover time, defined by the time it
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Fig. 8. Mean population density with fixed forward (towards the more fit state)
transition rate as a function of back transition rate for different environment periods
(s = 2, κ = 0.1, γ1 = 10−3). For very short environment periods (squares),
the mean fitness is almost independent of back transition. As environment period
increases, an optimal back transition rate emerges.

takes the invading species to become a considerable fraction of
the population, and the density takeover time, defined by the time
it takes the total population density to become a considerable
fraction of its equilibrium value. We have shown that these times
are generally distinct; in the limit of large selection coefficient
the latter is significantly shorter. The structure of the phase plane
trajectories was characterized and used to obtain approximations
for these time scales. This separation of timescales between
internal dynamics and total population dynamics has been recently
observed in a related model (Elhanati et al., 2011). The general
conditions under which it holds and its implication on population
survival are subjects for future research.

Bet-hedging can be realized by allowing transitions between
different cell states, and thus maintaining a variable population
structure even in a constant environment. With such transitions
the fixed-point of mutual exclusion is replaced by a fixed-point
of coexistence. For two competing sub-populations u, v. This fixed
point resides in the interior of themanifold u+v+ς = 1.We have
found that the fraction of the sub-optimal sub-population in this
fixed point approaches a finite limit even for very large selection
coefficient, in contrast to a systemwithout competition where this
fraction approaches zero.

In a fluctuating environment, these characteristics enable
us to assess enabled us to assess the advantage of dynamic
heterogeneity, where two states are available to the cells with
a finite rate of transition between them. The tradeoff between
a decrease in the steady-state fitness due to the presence of a
nonzero fraction of unfit cells, and the speed of takeover of this
minority as the environment changes, was calculated. We found
that for a slowly varying environment there is a nonzero value of
transition rate among the cell states which maximizes the mean
cell density over time. This optimal value was found to depend
strongly on the typical time scale of the environment and weakly
Fig. 9. Grayscale plots of the mean population fitness in changing environments for different phenotypic transition rates. Left: periodically changing environment, Right:
environment changing according to a Poisson process with mean time τ . τ = 5, s = 2, α = 1.2, κ = 0.1. When γ1 is large (top left hand corner), it is best to have a zero γ2 .
For low γ1 , there is a ridge of γ2 values where mean fitness is at a maximum. Its value is weakly dependent on γ1 .
Fig. 10. Critical transition rates for different system parameters. For each value of s and τ this figure shows the critical value of γ1 for which there exists an advantage for
dynamic heterogeneity. This value corresponds to the ‘‘knee’’ in Fig. 9. (a) Periodic environment with time τ . (b) Poisson process of environments with mean duration τ .
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on internal system parameters, such as the selection coefficient
and the induced transition rate. The main contribution to the
transient decrease in fitness in this model comes about from the
sudden change of environment and cell state of the dominant sub-
populations since it ‘‘controls’’ the environment and the change
causes a sharp decrease in total cell density. When changes in the
environment are more gradual, the control of the environmental
resource remains robust against these changes. Although the
long-term time-averaged population density is not significantly
changed, its temporal modulations are less abrupt and thus the
population is less prone to extinction. Another implication of this
observation is that the total biomass can be stable or change only
slightly, but the internal population structure and composition can
at the same time undergo dramatic modulations (see Fig. 7).

Appendix A. Single species in the chemostat

The problemof a single species growing in a chemostat is classic
and well known. We present here for completeness a general
formulation in terms of linear stability analysis, showing how all
properties of the phase plane of the dimensionless problem are
determined by local parameters of the growth function with a
simple geometric interpretation.

b

Fig. A.1. (a) Geometric interpretation of the parameters governing the chemostat
phase plane. These parameters were calculated by using linear stability analysis
and contain all the information regarding the dynamics of the system around its
fixed points. (b) Phase plane of the single species chemostat model with Monod
uptake growth function (α = 1.2, κ = 0.1). The stable fixed point is at {0.5, 0.5}
and the unstable fixed point is at {1, 0}. The dashed lines denote the eigenvectors
corresponding to the nontrivial fixed point.
If the chemostat is inhabited by a single species with a growth
rate function µ(ζ ), the dimensionless equations of motion are

dζ
dt

= 1 − ζ − µ(ζ )u

du
dt

= (µ(ζ ) − 1) u.
(A.1)

In these units the typical time of the chemostat (dilution time) is 1,
and the concentration of limiting nutrient in the feed is also 1. This
system has two fixed points (ζ ∗, u∗) = (1, 0) and (µ−1(1), 1 −

µ−1(1)). The Jacobian matrix is given by

J =


−1 − µ′(ζ )u −µ(ζ )

µ′(ζ )u µ(ζ ) − 1


where µ′(ζ ) denotes the derivative. At the trivial fixed the two
eigenvalues are {−1} and {µ(1) − 1} with eigenvectors (1, 0) and
(−1, 1) respectively. The parameter µ(1) controls the bifurcation
of this fixed point, as it loses its stability when µ(1) > 1; it also
determines the direction of the corresponding eigenvector. At the
nontrivial fixed point µ (ζ ) = 1, and the eigenvalues are {−1}
and {−µ′(ζ ∗)u∗

}with corresponding eigenvectors (1, −µ′(ζ ∗)u∗)
and (−1, 1). Once again both the stability of the fixed point and
the direction of one of the eigenvectors is determined by a single
parameter, η = µ′(ζ ∗)u∗

= µ′(ζ ∗)(1 − ζ ∗); this is the product of
the slope of the growth function and the population concentration
at the fixed point (see Fig. A.1(a)). The phase space flow (Fig. A.1(b))
is determined by this same parameter, with a crossover value of
η = 1 in which the two eigenvalues become degenerate. We shall
assume that they are not degenerate. The line connecting the two
fixed points, ζ + u = 1, is an invariant manifold of the system
(Smith and Waltman, 1995).

Appendix B. Two competing species: the road to mutual
exclusion

We here analyze the linear stability of the three dimensional
system, with two competing species characterized by growth
functions µ1 and µ2:

dζ
dt

= 1 − ζ − µ1(ζ )u − µ2(ζ )v

du
dt

= (µ1(ζ ) − 1) u

dv
dt

= (µ2(ζ ) − 1) v.

(B.1)

This system obeys the principle of mutual exclusion, and accord-
ingly its fixed points are (1, 0, 0), (µ−1

1 (1), 1 − µ−1
1 (1), 0) and

(µ−1
2 (1), 0, 1−µ−1

2 (1)). The structure in three-dimensional phase
space is simplified by the fact that the dynamics in the planes
u = 0 and v = 0 is identical to that of the single-species problem.
Because of mutual exclusion, all three fixed points lie on the sides
of the linear sub-space (ζ ≥ 0, u ≥ 0, v ≥ 0). All 9 eigenvectors
lie on the faces of the polygon defined by the union of these sides
with the plane ζ + u + v = 1. See Fig. B.1 for illustration.

More specifically, we can write the general form of the Jacobian
matrix

J =

−1 − µ′

1(ζ )u − µ′

2(ζ )v −µ1(ζ ) −µ2(ζ )
µ′

1(ζ )u µ1(ζ ) − 1 0
µ′

2(ζ )v 0 µ2(ζ ) − 1

 (B.2)

and examine its spectrum at the three fixed points of the system.
At the trivial state (1, 0, 0), the matrix takes the simple form

J =


−1 −µ1(1) −µ2(1)
0 µ1(1) − 1 0
0 0 µ2(1) − 1


. (B.3)
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Fig. B.1. Phase space of the two species chemostat model with Monod growth curves (α1 = 1.2, κ = 0.1) and constant selection coefficient s. Dashed lines with arrows
denote eigenvectors. (a) s = 1.08, (b) s = 2. (c) Projection of trajectory on the (u, v) plane for s = 2 and illustration of approximation. For large s, the takeover trajectory is
approximately composed of two linear segments (see also Fig. 1(d)). The larger s, the better this approximation becomes. We estimate the takeover time for equilibration of
the total population with environment by advancing along the eigenvector that leaves the unstable fixed point to the point of intersection of the two linear segments.
It has an eigenvalue {−1}with eigenvector (1, 0, 0) corresponding
to no population in the chemostat; an eigenvalue {µ1(1)−1}with
the eigenvector (−1, 1, 0) in the (ζ , u)-plane, corresponding to
only u-type population, and the same phase-plane structure as the
single-species problem; and analogously the eigenvalue {µ2(1) −

1} corresponding to a single-species problem in the (ζ , v)-plane.
The third eigenvalue for the nontrivial fixed points is positive for
one of them – rendering it unstable, and negative for the other
– rendering it the only stable fixed point of the system. Suppose
without loss of generality that v is dominant over u, then the third
eigenvalue for the unstable point is (1 − η2, −η1, η1 + η2 − 1)
with η1 = µ′

1(ζ
∗)u∗ and η2 = µ2(ζ

∗); and for the stable point it is
(1 − η4, −η3, η3 + η4 − 1) with η3 = µ′

2(ζ
∗)v∗ and η4 = µ1(ζ

∗).
In each case the star (∗) denotes values at the corresponding
fixed point. This form of the eigenvalues shows manifestly that
they are on the diagonal face of the 3-simplex as illustrated in
Fig. B.1.

The first two parts in Fig. B.1 show how the two types of
transient dynamics can arise from the phase space structure. The
key point is how the trajectories connect the two fixed points.
For small selection coefficient s, the change in the environment
between the two fixed points is small; there is no significant
process of equilibration with the environment taking place, just
a substitution of cell types, and the trajectories starting in the
vicinity of the sub-dominant population are almost straight. By
contrast for large s the trajectories are seen to be curved and can
be approximated by two straight lines.

We define the frequency takeover time by determining a
threshold on the ratio of the invading vs. resident species. Writing
the equations for the population densities as follows
du
u

=
d
dt

ln u = µ(ζ ) − 1

dv
v

=
d
dt

ln v = sµ(ζ ) − 1.
(B.4)

And defining a new variable

y = s ln u − ln v. (B.5)

It is found that y obeys a simple differential equation with the
following linear solution

y(t) = y(0) − (s − 1)t. (B.6)

Now setting thresholds θi on the ratio of the invading population at
the start of the process (e.g. v(0) = θiu∗, u(0) = 1−θiu∗) and θf at
the end of takeover tfreq (e.g. u(tfreq) = (1−θf )v

∗, v(tfreq) = θf v
∗),

one finds the frequency takeover time tfreq to be as in Eq. (4) in the
main text.

One may expect that the takeover time will become shorter as
the selection coefficient becomes large. This is indeed the case for
takeover dynamics in an open unlimited environment (see Fig. 2).
However, it is seen from Eq. (4) that the frequency takeover is
in fact bounded from below as s increases. It will become clear
in what follows, that a large selection coefficient drives a faster
equilibration between the total population and the environment,
but still the chemostat time scale places a bound on the inter-
species equilibration process.

For an estimate of the density takeover time tdens, we note
that for large s the trajectories are approximately composed of
two linear segments. In the first, the total environment changes
significantly and and reaches near its equilibrium value. In the
second, the environment is almost constant, as seen by the
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coordinate ζ , which changes very little in this segment. We use
this observation to compute the two timescales separately.

The computation relies once again on Eqs. (B.5), (B.6), however
the values of u and v at the time tdens will be taken from crossover
point between the two approximately linear segments in Fig. B.1.
These trajectories are shown in their projection on the (u, v) plane
in Fig. B.1(c). Starting from the vicinity of the unstable fixed point
with an initial fraction θi, namely at the point whose coordinates
are (ζ ∗, u∗(1 − θi), u∗θi), and moving along the direction of the
eigenvalue (1−η2, −η1, η1+η2−1), the projection of this segment
on the ζ -axis is simply the change in equilibrium value of the
limiting nutrient,1ζ ∗. The corresponding projections on the u and
v axes are

1u = 1ζ ∗


−η1

1 − η2


1v = 1ζ ∗


η1 + η2 − 1

1 − η2


.

(B.7)

Adding these segments to the initial point in phase space gives the
final values for u and v at the final point; inserting this into Eq. (B.6)
gives the expression in Eq. (5) of the main text.

Appendix C. Two-state population in the chemostat with tran-
sitions

Here we present for completeness the linear stability analysis
of Eq. (6) in themain text. Setting u̇ = v̇ = 0 one finds for the ratio
of phenotypes at the fixed point p = u∗/v∗ satisfies a quadratic
equation

γ1p2 + [s(1 + γ1) − (1 + γ2)] p − sγ2 = 0. (C.1)

The solution of this equation p = p(s, γ1, γ2) then determines
completely the fixed point values. The fractions at the fixed point
are fu =

p
p+1 , fv =

1
p+1 , which in turn determine the value of the

resource through the relation

p
p + 1

µ(ζ ∗) +
1

p + 1
sµ(ζ ∗) =

p + s
p + 1

µ(ζ ∗) = 1. (C.2)

For a Monod growth function, one finds ζ ∗(p) =
κ

s̃(p)α−1 with
an effective α determined by the ratio: s̃(p) =

p+s
p+1 . The total

population is then given by u∗
+ v∗

= 1 − ζ ∗ and the fractions
give the values of the individual values:

u∗
=

p
p + 1

(1 − ζ ∗(p)), v∗
=

1
p + 1

(1 − ζ ∗(p)). (C.3)

These equations define the only two fixed point of the system as
(1, 0, 0) and (ζ ∗, u∗, v∗)with all nonzero values and ζ ∗

+u∗
+v∗

=

1. Fig. C.1 shows the phase space for two values of γ1 = γ2 = γ .
For γ ≪ 1 (Fig. C.1(b)), the ghost of the unstable fixed point (∗)
corresponding to γ = 0 pulls the trajectories before they are
attracted to the true fixed point, which is very close to mutual
exclusion (the boundary of themanifold ζ ∗

+u∗
+v∗

= 1). It is seen
that also here the eigenvector on the manifold is approximately
parallel to the line u∗

+ v∗
= const, indicating that the total

population and resource may equilibrate before the steady-state
ratio between the two types relaxes.

To estimate the takeover time in the fluctuating environment,
we note that in a slowly varying environment the most important
factor affecting this transient is the initial condition, i.e. the (ap-
proximately steady state) fraction of unfit cells upon environment
change. Since this term is dominant in the regime of small transi-
tion rates, wewill neglect the effect of transitions and estimate the
takeover time from competition alone.
Fig. C.1. Phase space trajectories for the two-state population in the chemostat
with transitions. Empty circles: trivial fixed point. Full circles: coexistent state. As
transition rates decrease towards zero, a bifurcation is approached. The ghost of the
unstablemutual exclusion state (plotted in panel b as a star) attracts the trajectories
for a long period of time before they are finally attracted to the true fixed point.
Parameters: α1 = 1.2, κ = 0.1, s = 2, γ = 10−1 (a), γ = 10−5 (b). Trajectories
with the same initial conditions are plotted for comparison between (a) and (b).

Using once again Eqs. (B.5) and (B.6), we approximate the initial
and final conditions by those computed above for the steady states:
y(0) = s ln u(0) − ln v(0)

= s ln


1
p + 1


u∗

+ v∗


− ln


p
p + 1


u∗

+ v∗


y(ttk) = s ln u(0) − ln v(0)

= s ln


p
p + 1


u∗

+ v∗


− ln


1
p + 1


u∗

+ v∗


.

Solving these equations one finds the expression (12) in the main
text.
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