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Abstract

Biological cells in a population are variable in practically every property. Much is known about how variability of single cells
is reflected in the statistical properties of infinitely large populations; however, many biologically relevant situations entail
finite times and intermediate-sized populations. The statistical properties of an ensemble of finite populations then come
into focus, raising questions concerning inter-population variability and dependence on initial conditions. Recent
technologies of microfluidic and microdroplet-based population growth realize these situations and make them
immediately relevant for experiments and biotechnological application. We here study the statistical properties, arising from
metabolic variability of single cells, in an ensemble of micro-populations grown to saturation in a finite environment such as
a micro-droplet. We develop a discrete stochastic model for this growth process, describing the possible histories as a
random walk in a phenotypic space with an absorbing boundary. Using a mapping to Polya’s Urn, a classic problem of
probability theory, we find that distributions approach a limiting inoculum-dependent form after a large number of
divisions. Thus, population size and structure are random variables whose mean, variance and in general their distribution
can reflect initial conditions after many generations of growth. Implications of our results to experiments and to
biotechnology are discussed.
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Introduction

Biological cell populations exhibit a broad distribution of

phenotypes, even if genetically homogenous. Such variability has

been observed in practically every single-cell phenotypic property

that was measured, including cell size, protein content, division

rate and more. Although this is an issue of general interest in

biology, populations of microorganisms have provided important

model systems for developing novel experimental single-cell

techniques and applying theoretical analysis of the problem. Some

of the major topics of recent work have been understanding the

mechanisms underlying phenotypic variability [1–5], modeling the

distribution of phenotypes in populations of cells [6–8], and

revealing the role of phenotypic variability in the fate and survival

of microbial populations [9–14].

In the standard approach to the problem, from single cell

properties that have some stochastic components emerge the

statistical properties of a large (practically infinite) population.

Within this approach, variability in division rate seems to be a

most important property for population dynamics, and its

implications have been widely studied, especially in the context

of fluctuating environments [15–19].

However, a population of growing and dividing cells is not a

statistical ensemble of independent individuals. The environment

always plays an important role in real population growth; even

without direct interactions, as cells grow they continually modify

their environment and thus indirectly affect other population

members [20,21]. These considerations become even more

important in many biologically relevant situations where growth

is physically or biochemically constrained by the environment and

the limit of an infinite population is never reached. Inheritance

and memory in the population can then cause a delicate

dependence on initial conditions that can be more important

over finite growth times than the asymptotic dynamics.

When the environment is taken into account, another single-cell

property becomes important in addition to the division rate - the

yield with respect to growth resources. For example, in growth

under flow in a well-mixed environment, such as that described by

an ideal chemostat, although the fastest-growing cells take over,

the yield determines the population density at equilibrium [22].

Spatial structure in the environment can result in coexistence of

high-yield and high-growth-rate phenotypes [23], whereas models

for density-dependent selection show that high carrying capacity,

which is analogous to high yield, can be selected under some

conditions [24,25]. The picture that emerges from these works is

that the role of yield with respect to growth resource is strongly

dependent on the details of the environment and how exactly it

constrains the population.

Recent advances in microfluidic and microdroplet technology

have enabled to grow ‘‘micro-populations’’, intermediate-sized

populations that grow over intermediate lengths of time [26–30].

These experimental systems enable to follow the temporal

dynamics of the populations and to accumulate statistics of a

large number of such populations with well controlled initial and

environmental conditions. While obviously promising many

important practical applications, these advances at the same time

define a new regime for studying cell populations and highlight

some questions of fundamental nature: What is the variability

between different micro-populations? What is the dependence on

initial conditions and how does it decay with time and system size?

One is led to consider the statistical properties of an ensemble of

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e52105



finite populations, rather than those of single cells in an infinite

population. For example, the dependence on initial conditions in

constrained micro-chemostat growth was recently studied [31].

Using a model of growth-rate variability of single cells, it was

found that sometimes the effect of initial conditions persists

indefinitely, while in other circumstances it can take a very long

time until this effect decays.

In this work we study theoretically the effects of variability in

division rate and in yield on population dynamics in limited

environments such as finite droplets. In many cases of biological

relevance the yield is inversely correlated with division rate at the

single cell level as both vary across the population [23,32–34].

Experimental evidence supporting such a ‘‘metabolic tradeoff’’

was reviewed in [33] and in the Supplement of [34]. Recent

theoretical work has shown that accounting for metabolic tradeoffs

between these two cellular properties can give rise to nontrivial

behavior at the population level, even in a deterministic model in a

simple chemostat-like environment [34]. Previous work suggested

that high-yield growth can be considered a cooperative strategy

that models evolutionary dilemmas [23,33], while here we are

interested primarily in the statistical effects and in long-term traces

of initial conditions on finite populations. We develop a stochastic

model with emphasis on tracking histories of individual equally

prepared micro-populations to characterize their distribution at

the end of growth. While this work is of basic and theoretical

nature, there are implications to experimental measurements and

to practical biotechnology that arise and are discussed briefly at

the end.

Model

A single metabolic network defined by its enzymes, metabolites

and biochemical reactions can support many different modes of

metabolic flux at steady state growth [35,36]. These modes are

generally associated with different cellular properties such as

division rate and yield with respect to growth resources.

Considering the large variability observed in practically any

physiological property that was measured at the single cell level in

microorganisms, it is only natural to assume that the metabolic

state, and with it the yield, are also variable properties in such a

population. This assumption is supported by experiments on

bacteria grown in continuous culture, showing a broad range of

operational modes of the metabolic system [37]. In addition to

their direct measurements, which is relatively difficult, the

implications of yield variability can possibly be measured in terms

of the population dynamics and statistics under constrained

conditions as described below.

We consider a population of microorganisms with a range of

metabolic states, each characterized by a different yield towards a

growth-limiting resource. In the model the population will thus be

represented as a mixture of several different metabolic states, each

characterized by a division rate mj(S) and a yield Yj . A single

growth-limiting resource, a nutritional substrate S, describes the

environment. The state space of the entire system is characterized

by the number of cells of each phenotype and the amount of

resource at a given time nj

� �
,S

� �
. Cells of state j can divide with

probability mj(S) per unit time, in which case the resource is

depleted by an amount 1=Yj . The different states supported by the

metabolic network are generally of finite lifetime and therefore

cells can change their metabolic state. These changes can be

described by transitions from state j to i with probability bij per

unit time, in which case the substrate remains unchanged. The full

model is completely specified by the following master equation:

LP(n1,n2,:::,nk,S,t)

Lt

~
Xk

j~1

P(n1,n2,:::,nj{1,:::nk,Sz1=Yj ,t)(nj{1)mj(S)

{
Xk

j~1

P(n1,n2,:::,nj ,:::nk,Sz1=Y ,t)njmj(S)

z
X

i,j

P(n1,n2,:::,nj{1,:::,niz1,:::nk,S,t)(niz1)bji

{P(n1,n2,:::,nj ,:::,ni,:::nk,S,t)
X

i,j

nibji:

In the present analysis, however, we will be interested in

timescales over which transitions can be neglected and they will

therefore not be included in the model. A metabolic tradeoff is

represented at a phenomenological level, by imposing some

relation between the growth rate and yield at the single cell level.

Results

Deterministic (Average) Dynamics
A homogeneous population growing in a microdroplet, starting

with initial conditions of cell number and resource (N0,S0), will grow

to a stopping time t� when the resource is depleted. The stopping

time and the final number of cells N(t�) is determined by the number

of divisions and the amount of resource taken up for each division:

S0{
N(t�){N0

Y
~0 ð1Þ

where Y is the uniform yield. For typical droplets the final population

size is on the order of 105{106 cells, and the starting initial number

N0, typically in the range~1{1000, is relatively very small. The

final population size is therefore dominated by YS0, and its

dependence on N0 negligible (see Figure 1; dotted line). However,

if the population is heterogeneous in its properties, generally its

composition will change over time and with it the averaged yield.

This will affect both the stopping time and the final number of cells.

To see this, consider the deterministic approximation to the model

dynamics: as long as there is still growth resource, these dynamics are

described by the equations

dS

dt
~{

Xk

j~1

mj(S)nj

Yj

ð2Þ

dni

dt
~mi(S)ni ð3Þ

where (ni(t),S(t)) is the average trajectory of the system over time.

The stopping condition, S~0, analogous to Eq. (1) can then be

written, taking into account this variability:

S0{
Xk

j~1

1

Yj

ðt�
0

mj(S(t))nj(t)dt~

ðt�
0

N(t)S
m

Y
Ttdt~0 ð4Þ
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Here N(t)~
Pk
j~1

nj(t) is the total number of cells at time t, and we

have defined the average of any property x over the population at

time t as SxTt~
Pk
j~1

xj
nj (t)

N(t)
. The stopping time and the final cell

number are therefore seen to depend on the average resource

uptake rate Sm
Y
Tt along the trajectory, which makes them generally

history-dependent quantities. Note that if cells differ only by their

division rate but have all the same yield, the relation (1) is

recovered; although the population composition changes with

time, the mean uptake rate remains the same.

It is instructive to consider a simplified population with only two

phenotypes and with a step-function dependence of the division

rate on the substrate: mi(S)~mi when Sw0 and mi(s)~0 when

S~0. We assume initial conditions to be distributed around a

symmetric mixed population so on average the initial amount of

each phenotype will be half of the total initial population. Eq. (4)

then reads.

S0{
N0

2Y1
em1t�{1
h i

{
N0

2Y2
em2t�{1
h i

~0: ð5Þ

This equation can generally be solved numerically for the

stopping time and from that the final number of cells can be found.

For a special choice of division rates m1~1, m2~2 one may solve

analytically the resulting quadratic equation in l~et� . Defining

the ratio between the yields of the two cell states as r~ Y2

Y1
the

quadratic equation reads.

l2zrl{r{1{2
Y2S0

N0
~0

revealing a dependence on one additional dimensionless param-

eter, e~
N0

Y2S0
, which represents the initial population size relative

to the approximate number of divisions supported by the medium.

From the physical solution of this equation, l, we find an explicit

expression for the final number of cells as a function of the initial

number:

N(t�)~
N0

2
et�ze2t�
� �

~
N0

2
lzl2
� �

~
N0

2
w r,eð Þ ð6Þ

where the function w gives a generally nonlinear dependence on

the initial number of cells N0. In many experimental cases of

interest e is very small; droplets are started with a small number of

cells and the amount of resource allows a large number of cell

divisions before saturation. Expanding in this small parameter we

find the approximation

N(t�)&N0zY2S0zY2S0 1{rð Þ
ffiffiffi
e

2

r
: ð7Þ

Now imagine an experiment in which the initial droplet cell

content N0 is varied while other parameters are held fixed. Then

the correction to the final cell number induced by metabolic

variability will depend nonlinearly on the initial number, to

leading order as the square root of N0, with coefficients that can

result in an increasing or decreasing function depending on the

ratio between yields. Recall that we have marked by 2 the faster-

growing phenotype, and therefore the ratio between yields, r~
Y2
Y1

,

defines the correlation between division rate and yield in single

cells. A ratio smaller than one, rv1, describes a metabolic

tradeoff, namely cells that grow faster have a smaller yield. Such a

negative correlation between growth and yield has been observed

in several cases for microorganisms (reviewed in [33,34]). Then,

the final number of cells is an increasing function of the initial

conditions (Figure 1, upper increasing dashed line). By contrast if

the yield is positively correlated with the division rate, rw1, a

decreasing curve is found (Figure 1, lower decreasing dashed line).

These analytical results are relevant for a special choice of division

rates which render the equation solvable, however we expect that

the qualitative nature of the solutions to be insensitive to the exact

values of division rates. For comparison Figure 1 (symbols) shows

also the results of a Monte-Carlo simulations of the two-state

population that grows in a microdroplet, giving the final cell

number directly without any approximation. For a growth-rate

ratio of 2, the analytic results are recovered (symbols overlapping

with dashed lines); for a different non-integer ratio, the qualitative

features remain. (+, metabolic tradeoff; o, yield and division rate

positively correlated).

Stochastic Analysis by Phenotype-space Trajectories
The results for the averaged dynamics show that yield variability

can significantly modify the dependence of the final mean number

of cells on the initial number. It is expected that the variability

among populations will show an even more pronounced depen-

dence; to investigate this variability we consider the stochastic

dynamics of the model. Here the object of interest is the

probability distribution of the system among its possible states,

P(n1,n2,:::,nk,S,t) which obeys the Master Equation (see Eq. (1)), so

that for a given initial condition the explicit time dependence of

the distribution can be computed. However, to describe the

ensemble of populations grown to saturation we need much less

information and one can formulate the problem in a simpler way.

The key observation is that in order to characterize the

distribution of populations at the end of this finite-time growth

Figure 1. Average final vs. initial population size in micro-
populations grown to saturation of resource. Dotted line: a
population with a uniform yield. Symbols: Monte Carlo results for two-
state populations with variability in yield and in growth rate. Dashed
lines: analytic approximations relevant only for special parameter
values. Crosses: Monte Carlo simulation for ‘‘metabolic tradeoff’’
r~Y2=Y1~2, r~m1=m2~2 (lower crosses), r~1:8 (upper crosses).
circles: variable yield positively correlated with division rate
r~0:5, r~2 (upper circles), r~1:8 (lower circles).
doi:10.1371/journal.pone.0052105.g001
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one needs only the sequence of divisions that make up the

trajectories, and not the time points at which they occurred.

Therefore one may study the geometry of random trajectories in

phenotype-space; we develop this approach for the toy two-state

model discussed above, but the basic idea can be generalized to

multiple states.

The growth of a micro-population with two cell states is

pictured as a random walk on a discrete two-dimensional

phenotype plane (n1,n2) with the axes representing the number

of cells of each type. Time units of this random walk will be taken

as times between divisions (these time units are not constant but

vary randomly). The initial condition is (n1(0),n2(0)), and at each

point (n1,n2) there is a probability p1 for the next division to be of

type 1, in which case the trajectory will advance one step along the

n1 direction; and a probability p2~1{p1 for it to be of the other

type, in which case it will advance along the n2 direction. To find

p1 we approximate the divisions as Poisson processes with

probabilities per unit time m1,m2 to divide. The probability that

the next division is of type 1 and occurs after exactly time t is given

by.

p(1,t)~e{½n1m1tzn2m2t�:n1m1dt

Therefore the probability for the next division to be of type 1,

regardless of the time it occured, is just the integral over t of the

above expression,

p1~?
0

e{½n1m1zn2m2�t:n1m1dt~
n1m1

n1m1zn2m2

~
rn1

rn1zn2
:

In contrast to a simple random walk, where the probability to

move in each direction is the same everywhere, here it depends on

the position in the plane, namely on the number of cells of each

type. It also depends globally on the ratio r between their division

rates. To describe in phenotypic plane the stopping condition at

depletion of the resource, we note that the two cell types consume

a quantity 1
Y1

or 1
Y2

respectively of this resource in each division.

Therefore the geometric place of all points (n1,n2) that correspond

to the stopping condition is.

S0{
n1{n1(0)

Y1
{

n2{n2(0)

Y2
~0 ð8Þ

which can be written as: n2zrn1~c, the ‘‘stopping line’’ (using the

yield ratio r and defining the constant c:S0Y2zn2(0)zrn1(0)).
The form of the equation describing the stopping line shows that if

r~1 all trajectory endpoints have the same final number of cells

n1zn2, while for r=1 the final number of cells varies along the

stopping line. Figure 2 illustrates the space and the dynamics by

showing some individual trajectories of micro-population growth:

starting from a given initial condition (n1(0),n2(0)), each trajectory

shows the history of a single population which, depending on the

order of divisions of each of the two types, proceeds randomly in

the phenotypic plane until it hits the stopping line where all

trajectories are absorbed. In Figure 2A the two cell types are

uniform in their properties and the random walk is therefore

symmetric in the two directions. The final number of cells is

deterministic and only the final population composition - what

fraction of each type - is variable, depending on the details of the

random trajectory, with a symmetric distribution. Figure 2B shows

that non-uniform division rates of the two types cause a bias in the

trajectories and they become curves in the plane. Still, the final

number of cells is deterministically fixed because both types have

the same yield. In contrast Figure 2C shows that non-uniform

yields modify the slope of the stopping line, and therefore each

trajectory on that line has a different final number of cells. In this

graphical representation, it is clear that the two metabolic

properties - division rate and yield - play separate and different

roles in the problem: the first determines the bias of trajectories

while the second determines the slope of the stopping line. Any

assumed relation between them can be inserted as additional input

to the model.

Probability distributions at the stopping line. The

probability distribution at the stopping line is determined by the

probabilities of trajectories arriving at each point; this is what

allows us to leave out of the discussion the temporal structure of

trajectories. As we have seen, the composition of the final

population, namely the number of n1 cells, is always a random

variable even if the cell types are identical in their phenotypic

properties. Our goal is to calculate fr,c(n1), the probability density

function of n1 on the stopping line n2zrn1~c, given an initial

condition n (0), or at least to estimate its moments.

We first consider the simpler case where the yield in the

population is uniform (r~1 or Y1~Y2~Y ) and the division rate

is uniform (r~1 or m1~m2~m), corresponding to Figure 2A. The

total number of cell divisions in all trajectories is fixed at

N(t�){N0~YS0, and we have two types of events - division of

type 1 or 2 - occuring with the same probability out of a total given

number of events. This can be mapped to a classic problem in

probability theory known as Polya’s Urn [38,39]. In Polya’s

original problem, white and black balls are drawn at random from

an urn; each time one ball is chosen it is returned back to the urn

with an additional ball of the same color. In our analogy the

probability that out of k draws from the urn n1 will be white is

equivalent to the probability that out of k divisions n1 will be of

type 1. This probability is the well known Beta-Binomial

distribution:

Pk(n1; n1(0),n2(0))

~
k

n1{n1(0)

 !
B(n1,kzn1(0)zn2(0){n1)

B(n1(0),n2(0))

ð9Þ

where B(x,y) is the Beta function. Using the moments of this

distribution, the ratio between its standard-deviation and mean is

g:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(n1(t�))

p
Sn1(t�)T

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(t�)

N(t�){N0

s ffiffiffiffiffiffiffiffiffiffiffiffi
n2(0)

n1(0)

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N0z1
p : ð10Þ

This ratio, representing the relative width of the final distribution,

does not decay with an increasing number of divisions; in the limit

N(t�)~N0zk&N0 it converges to a quantity proportional to the

inverse square root of the inoculum size. An additional factor

represents the initial composition, namely how many cells of each

type were in the inoculum. Assuming that in a typical experiment

this initial composition is averaged over some set of possible

preparations, there remains still a strong dependence on the

inoculum size: g!1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N0z1)

p
. At the extreme, starting many

copies of an initial population with a single cell of each type, the

final ensemble of populations has all possible values of n1 between

0 and N with equal probability (a uniform distribution), no matter

how many generations have passed. In contrast to our intuition

Metabolic Variability in Micro-Populations
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from many repetitions of a coin-flipping, there is no convergence

after a long time to a distribution that is strongly peaked around

1=2. This result illustrates an important property of all models

studied here: for a large number of cell divisions, the distribution

tends to a limit whose shape is independent of the number of

divisions but still maintains a fingerprint of the initial population

size [40].

A generalization of Polya’s urn can be constructed for the more

general case of variable division rates, (illustrated in Figure 2B).

Since the ratio r~m1=m2 is the only relevant parameter for the

phenotype-plane trajectories, we may approximate it by the ratio

of two large integers M1,M2 and map the problem to an urn in

which each cell of type i is represented by Mi balls of color i. If

each ball chosen at random is returned to the urn with an

additional Mi balls of the same color, the ratio of probabilities for

choosing each color remains faithful to the ratio of division rates,

and the number of cells of each color in the urn at any given time

is proportional to the number of cells of the corresponding type.

Formulation of this construction can be found in Text S1.

The limiting distribution shape is revealed in term of scaling

variables. Figure 3 shows several such limiting distributions for the

case of uniform yield as a function the scaling variable XN~n=Nr.

For uniform division rate (r~1) this variable reduces to

XN~n=N, the fraction of type-1 divisions, and the limit

distribution is just the bounded Beta distribution

XN?X ~BBeta(n1(0),n2(0)). For non-uniform division rate the

scaling variable is a more abstract mathematical quantity, and

its distribution converges as XN?X ~UU{rV where U and V are

two Gamma distributed random variables - U ~CC(n1(0),1),

V ~CC(n2(0),1). This distribution has no closed form density but

has known moments (see Text S1 for details). The relative width of

these distributions in both cases, equal and variable division rates,

decreases as the inoculum size increases.

In the example above, Eq. (10) and the distributions of Figure 3

manifestly show how the size of the initial preparation affects in

the variation in population composition when yield is uniform.

This is somewhat analogous to the effect of population bottlenecks

on variability through genetic drift. Next we consider the more

interesting case of a population with variable yield, in which not

only the composition but the total final number of cells is itself a

random variable.

Yield variability and distribution of final population

size. In terms of the graphical phenotypic plane representation,

we are interested in trajectories that end on a line with slope

={1, since r is now different from one (see Eq. (8)). In our model

trajectories in phase plane can advance only in one of two

directions: increasing n1 or n2 (this property is lost if transitions

between phenotypes are accounted for). Using the stopping

condition and this monotone property of the trajectories, one

can find a relation between the cumulative probability function of

n1 with non-uniform yields Fr,c(n1) and the uniform case discussed

in the previous section, but with an effective value of c:

Fr,c(n1)~Fr~1,czn1(1{r)(n1): ð11Þ

This relation provides the key to computing the distributions in

the variable-yield population from the uniform-yield results

presented above. It is illustrated graphically in Figure 4.

When yields are variable, each point on the stopping line

corresponds to a different final population size. It is determined by

the n1 coordinate of that point and by the initial conditions:

Figure 2. Trajectories in phenotypic space for heterogeneous
micro-populations grown to saturation of resource. Each point in
the plane (n1,n2) represents the number of cells of each type in the
population. Division of type 1 increases n1 by one and corresponds to the
trajectory advancing along the x-direction, and similarly for type 2. All
three panels show trajectories that start from an initial population of
n1~n2~50. (A) symmetric types (r~1, r~1). Trajectories are equally
likely to proceed along x or y, and the stopping condition is of slope
({1). (B) Types differ by their division rates (r~1, r~0:5), causing the
trajectories to be biased towards the faster growing type. (C) Types differ
in their yield with respect to the finite resource (r~0:5, r~1), causing the
stopping line to be of slope different from ({1); growth will stop after a
variable total number of divisions depending on trajectory, since each
type consumes a different amount of resource at division.
doi:10.1371/journal.pone.0052105.g002

Metabolic Variability in Micro-Populations
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N(t�)~n1(t�)zn2(t�)~czn1(t�)(1{r): ð12Þ

This relation is used to define the scaling variable x(n1), which

reveals the limiting distribution shape for a large number of

divisions (see Text S1 for details). The mean and variance of this

distribution are found by inverting this scaling variable as

n1~n1(x), as follows:

SNT~N0zY2S0z(1{r)Sn1(x)T ð13Þ

Var(N)~(1{r)2Var n1(x)ð Þ: ð14Þ

These expressions show that the mean final population size

obtains an additional term from yield variability (r=1) which can

be negative or positive depending on the correlation between

Figure 3. Scaled distribution of the number of cells of
metabolic type 1 in the final population. All distributions are for
symmetric initial composition, equal yields and a large number of
divisions. Different distributions in a plot are for different initial
populations N0 (Blue - N0~4, Green - N0~10, Red - N0~20). These
distributions are plotted as a function of the scaling variable x (see text
for details), and their shape does not depend on the number of
divisions but does depend on the initial number of cells. (A) The two
types have the same growth rate and are therefore equal in all their
properties. Population composition varies only because individual
trajectories are composed of different sequences of divisions of the two
types. Because of the symmetry between types, all distributions are
symmetric around 0:5. (B) The two types have different growth rates,
and the distribution of final composition becomes skewed.
doi:10.1371/journal.pone.0052105.g003

Figure 4. Relating trajectories of uniform and variable yield
populations. All gray trajectories, ending on the solid red line
(variable-yield stopping line) at points corresponding to n1v200, build
up the cumulative probability for the final population to have less than
200 cells of type 1. Due to the monotone property of trajectories, they
all cross also the dashed line (uniform-yield stopping line) that passes
through the point n1~200 obeying the same ocnstraint and thus the
cumulative probability is the same. The parameters of the two lines are
simply related through n1 (see Eq. (11)).
doi:10.1371/journal.pone.0052105.g004
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division rate and yield (see also Figure 1). The variance in final

population size, of course, becomes positive from yield variability

with a variance that increases with the extent of this variability,

represented by (1{r) in this two-state model. A detailed

derivation of these results is presented in Text S1.

The dependence on the inoculum size is incorporated in the

moments of the random variable n1(x). To illustrate this

dependence graphically in phenotype space, we show in Figure 5

sets of trajectories starting at different inoculum sizes with all other

parameters held fixed. In this figure, for ease of comparison, the

axes are the number of divisions during growth (Dn1,Dn2) rather

than the absolute number of cells of each type. The difference in

growth rates causes a bias of trajectories towards Dn2, the faster

growing type. For small inoculum sizes (Figure 5A), an initial step in

the n2 direction can rapidly amplify itself causing a heavy bias of the

mean towards this type; because this rapidly growing type is less

efficient, the mean number of cells at the stopping line is smaller,

namely the stopping line intersects a dashed line Dn1zDn2~const
with a smaller value of the constant. At the same time, this amplified

sensitivity causes a wide spread of the trajectories. As inoculum size

increases, the relative effect of this bias at the stopping line becomes

smaller (Figures 5B, 5C); the trajectories are less spread-out and the

mean final number of cells increases.

In several special cases of interest the moments of the

distribution of final population size can be explicitly calculated

or approximated, for example the case of equal growth rates, or

growth rate ratio of exactly 2. Analytic calculation is harder in the

general case of variable growth rates and variable yields. Details of

the calculations for special cases which allow solution are

presented in the Text S1. In any case the moments can be

calculated directly from averages over the limiting distribution by

numerically inverting the relation defining the scaling variable.

In Figure 6 we show several examples of the distribution of final

population size (A), and approximations for the standard deviation

which are in good agreement with the simulation (B) and decreases

as a power law of the inoculum size.

The stochastic analysis of the model allows the computation of

variance and higher moments, analytically in some cases and

numerically in others. The average is consistent with the

deterministic approximation solution presented earlier, however

it is expressed by moments of another random variable which is

not generally available in closed form. In the deterministic analysis

it was possible to develop a controlled approximation for the limit

of large number of divisions, which is not easily done in the general

stochastic equations.

Discussion

Recent advances in microdroplet and microfluidic technology

for growing cell populations have the potential to provide basis for

Figure 5. Trajectories in phenotypic space illustrating dependence on inocculum size. Results of Monte Carlo simulations are shown for
initial population sizes of 2,20,50 equally divided between the two types. Axes are number of divisions. Parameters: r~r~2=3. All trajectories end on
the stopping line (red line) which has an asymmetric slope; trajectories ending at different points on this line have a different final population size
(dashed lines). The mean of all trajectory endpoints on the line is marked with a black circle. It can be seen that as the inoculum size increases, going
from (A) through (B) to (C), the spread of trajectories decreases and their mean crosses a dashed line corresponding to a higher number of cells.
doi:10.1371/journal.pone.0052105.g005

Figure 6. Final population size for a heterogeneous micro-
population with metabolic tradeoff. (A) Distributions of the final
populations size from simulations with division rate ratio r~0:5 and
yield ratio r~0:5, for different initial population sizes - 2 cells (solid line),
4 cells (dashed line), 8 cells (dotted line), 64 cells (dash-dot line). In (B)
we can see the Standard deviation of the final population size as
function of initial population size, in good agreement with the analytic
approximation.
doi:10.1371/journal.pone.0052105.g006
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many practical applications. At the same time, they open up an

interesting regime for cell population behavior that has previously

been unexplored. The intermediate sizes of populations, the

control over initial conditions and the availability of an ensemble

of populations equally prepared, offer to think about these micro-

populations as repeated experiments of mesoscopic sized systems

and to consider the stochastic properties of this ensemble of finite

populations.

Cell populations have a structured and dynamic phenotypic

composition in terms of their metabolic properties, and in

particular their growth rate and their yield with respect to

growth-limiting resources. This structure can strongly influence

the dynamics of the population in the intermediate-size regime.

We have formulated and solved a theoretical model that relates

metabolic variability of cells to measurable statistical properties

illustrating the emergence of novel behavior in this regime of

micro-populations. In the absence of asymptotic takeover that

results from infinite-time competition, the presence of both

efficient and fast-growing phenotypes creates a dependence

between the dynamics of the population composition and the

effective consumption rate of the resource, resulting in a variability

of the final population composition and size. Moreover, even the

mean final population size exhibits an inoculum dependency

which does not disappear after a large number of divisions. We

have demonstrated this effect for a two state model with large

ratios of yields and divisions rates. With smaller, more realistic

ratios of the metabolic parameters, the two state model produce a

smaller but qualitatively identical effects. However, modeling a

more realistic situation would also require including a broader

range of phenotypes. These more realistic models remain subject

for future work.

As a theoretic approach to analyzing this regime of population

growth we have constructed a mapping to a probabilistic problem,

a generalization of Polya’s Urns [41], which allowed us to compute

stochastic properties of the population. In this class of problems it

has been shown that limiting distributions appear which are

independent of the number of trials but do depend on the initial

conditions; in the case of a dividing population, it means that

statistical properties of the ensemble of populations converge to a

limit after a large number of divisions, which still reflects the initial

condition of the inoculum.

All of these predictions obtained in our work can be tested in

experiments on microdroplets. For example, the dependence of

the final distribution on initial condition (number of cells in

preparation) but its independence on number of divisions (amount

of resource in each droplet) can be tested directly. At the present

state of the technology both these parameters can be controlled to

good accuracy. The dependence of variance on inoculum size can

be easily measured [27]. The extent of yield variability,

represented in our model by (1{r), is expected to be sensitive

to the type of growth medium and other details of growth

conditions [42]. A systematic investigation of these statistical

properties as a function of growth parameters can indirectly

provide much information about actual yield variability in a

microorganism population and its dependence on environmental

parameters.

The limiting environment and the finite growth time in

microdroplets bring into light the importance of yield variability,

which has been largely overlooked in previous studies. In

unconstrained populations the fastest dividing cells take over and

thus division rate is often equated with the Darwinian concept of

‘‘fitness’’. In micro-population, on the other hand, the yield

becomes a selective parameter – the yield composition of the

population changes by the time the resource is depleted, with the

higher-yield cells having a larger representation in the population

regardless of their growth rate. This effect can be used to select

high-yield cells via cycles of growth to saturation followed by

mixing (B. Teusink, unpublished results, 2012). Such a controlled

growth protocol can have implications to biotechnology by

providing an empirical way to maximize biomass yield in

microorganisms building on existing yield variability in the

population. Developing such protocols is subject for future

theoretical and experimental research.

Supporting Information

Text S1

(PDF)
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