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The copy number of any protein fluctuates among cells in a population; characterizing and under-

standing these fluctuations is a fundamental problem in biophysics. We show here that protein distribu-

tions measured under a broad range of biological realizations collapse to a single non-Gaussian curve

under scaling by the first two moments. Moreover, in all experiments the variance is found to depend

quadratically on the mean, showing that a single degree of freedom determines the entire distribution. Our

results imply that protein fluctuations do not reflect any specific molecular or cellular mechanism, and

suggest that some buffering process masks these details and induces universality.
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The protein content of a cell is a primary determinant of
its phenotype. However, protein copy number is subject to
large cell-to-cell variation even among genetically identi-
cal cells grown under uniform conditions. This variation
has been the subject of intensive research in recent years
([1–7] and references therein). Much of this previous work
was devoted to characterizing the stochastic properties of
various processes underlying gene expression, such as
transcription and translation [8], or different stages of the
cell cycle [9], and understanding their effect on protein
variation. However, gene expression is generally coupled
to all aspects of cell physiology, such as growth [10],
metabolism [11], aging [12], division [13,14] and epige-
netic processes [15,16], as well as gene location and func-
tion [17], all of which were shown to affect protein
variation. The emerging picture is of a plethora of corre-
lated mechanisms at different levels of organization; how
they integrate to shape the total protein variation in a
dividing population remains an open question [11,14].

In this work we addressed this question by a phenome-
nological approach. We measured distributions of highly
expressed proteins in proliferating clonal populations of
bacteria and yeast under natural conditions, where gene
expression is coupled to other cellular processes. By design-
ing an array of different metabolic and regulatory condi-
tions as well as growth environments, we collected a
compendiumofmeasurements which systematically covers
the major processes of gene expression and cell division,
and compared the measured distributions in a wide
range of biological realizations.More specifically, our com-
parisons included the following. (a) Two archetypical
microorganisms, bacteria and yeast, with two well-studied

regulatory systems of essential metabolic pathways: the
LAC operon in E. coli [18] and the GAL system in S.
cerevisiae [19]. Both systems were studied under environ-
mental conditions in which expression is strongly coupled
to metabolism; namely, they control the utilization of an
essential sugar (lactose and galactose, respectively) as
the sole carbon source. (b) Different metabolic growth
conditions: the organisms were grown in chemostats—con-
tinuous culture in steady state and transients, as well as in
batch cultures. (c) Highly regulated versus constitutive
(approximately fixed rate) expression. The regulated LAC
and GAL systems were compared to constitutively ex-
pressed proteins in both organisms. (d) Different promoter
copy numbers: the same regulatory systems were placed on
high-copy (HC) and low-copy (LC) number plasmids as
well as integrated into the genome in a single copy.
(e) Reporter GFP was compared to an essential functional
tagged-protein controlled by the same promoter (for experi-
mental details see the supplemental material [20]).
The spectrum of our experiments spans an array of

‘‘control parameters’’ ~pwhich covers many of the essential
processes affecting protein content in cells. The two or-
ganisms used, E. coli and S. cerevisiae, are distinct in
almost every aspect of their cell biology and life style,
from gene regulation and expression to cell division and
physical characteristics such as shape and volume. A
comparative experiment in which some control parameter
was varied will reveal the sensitivity of the distribution
to that particular parameter. If there is no sensitivity and
the distributions are the same, then they do not convey
information about that parameter and the two experiments
exhibit universal behavior. Given the differences between
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the organisms, the various regulatory systems and the
different experimental conditions, it was not at all obvious
a priori that any universality could be found.

Figure 1 shows a collection of distributions measured in
such comparative experiments. Despite the clear differ-
ences in scale between the distributions they all show
common features: all are skewed, unimodal and exhibit
extended exponential-like tails. These general features
were previously reported in multiple publications, and
different mechanisms were proposed to account for them
[11,13,21–23]. Some of the distributions displayed in
Fig. 1 are very similar to one another: for example,
Fig. 1(a) shows two indistinguishable distributions of
GFP under the control of a LacO promoter on a high-
copy number plasmid in bacteria, and under the control of
the GAL10 promoter integrated into the genome in yeast.
Similarly, Fig. 1(d) depicts identical distributions of a
reporter GFP expressed under the GAL10 promoter and
an essential metabolic protein tagged with GFP at its C
terminal, both integrated into the genome in yeast.

Assuming that these similarities are not coincidental, the
possibility arises that there is a universal principle under-
lying protein distributions in proliferating populations of
microorganisms.
To test this possibility, we compared the distributions

after normalizing out the obvious differences in absolute
scales, which are mostly manifested in their mean and
standard deviation. The mean� ¼ hxi reflects the absolute
number of proteins in the cell, the strength of the specific
GFP used and its behavior in the different biological con-

texts. The standard deviation � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx2i � hxi2p

is strongly
affected by the dynamic range of protein content that also
depends on the particulars of the biological system.
Figure 2 shows all the distributions of Fig. 1 on a common

x axis. For each distribution the axis was normalized by
subtracting its mean and dividing by its standard deviation.
Remarkably, all distributions collapsed to a single curve
over almost 10 standard deviations in scaled fluorescence
(x axis) andmore than 3 decades in probability density. This
presentation reveals the universality of the protein distribu-
tion shape within the entire array of our experimental con-
ditions: the distribution f obeys the scaling form

fðx ; ~pÞ ¼ ’

�

x��ð ~pÞ
�ð ~pÞ

�

; (1)
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FIG. 1 (color online). Protein distributions. GFP fluorescence
distributions in populations of bacteria (red) and yeast (black)
measured under different conditions by flow cytometry.
(a) High- and low-copy number (HC and LC respectively)
regulatory promoters in bacteria and yeast: GFP expressed under
the LacO promoter on high (circles) and low (squares) copy
number plasmids in bacteria, and under the GAL10 promoter on
a high-copy plasmid (circles) and integrated into the genome
(squares) in yeast. (b) Continuous (chemostats; circles) and
batch cultures (diamonds) in bacteria and yeast: GFP expressed
from high-copy number plasmids under the LacO or GAL10
promoters, respectively. (c) Regulated (squares) and constitutive
(x) promoters: In bacteria, LacO promoter is compared to
ColE1P1 promoter, both on low-copy number plasmids, and in
yeast the GAL10 promoter is compared to ADH1, both inte-
grated into the genome. All populations were grown in batch
cultures. (d) Reporter GFP under GAL10 promoter (squares) and
a functional HIS3-GFP N-terminal (stars) and C-terminal (tri-
angles) tagged, both under the GAL1 promoter. All fluorescence
levels in this figure were normalized such that the peak of the
distributions appears at 1. The probability density is normalized
to unit area. Note the logarithmic y axis.
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FIG. 2 (color online). (a) All distributions of Fig. 1 are plotted
in units scaled by subtracting the mean and dividing by the
standard deviation. The symbols represent different experiments
as follows: LacO promoter on a high-copy plasmid in bacteria
(blue star—grown in chemostat, cyan triangle—in batch); the
same on a low-copy plasmid in chemostat (red circle); GAL10
promoter on a high-copy plasmid in yeast (green triangle –
grown in chemostat, magenta squares—in batch); the same
integrated into the genome in chemostat (black cross); ADH1
promoter integrated into the genome in yeast grown in batch
(blue diamond); ColE1P1 promoter on a low-copy plasmid in
bacteria grown in batch (red triangle); Fused HIS3-GFP under
GAL1 promoter in yeast in chemostat (N terminal—cyan circles,
C-terminal—black pentagram). The black line is the Frechet
distribution best fit to the data, Eq. (4) with k ¼ 0:095,
m ¼ �7:5, and s ¼ 7:09.
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showing that the dependence on the control parameters ~p
enters through the mean and standard deviation. Other
forms of scaling do not result in such a collapse (supple-
mental Fig. 1 [20]). Among several well-known skewed
distributions we found that the rescaled data can be well
fitted by the Frechet distribution, shown by the black curve
in Fig. 2, or by a log-normal distribution. Further informa-
tion on fitting the data is given in supplemental Figs. 3 and 4
[20]. It is emphasized that other fitting functions can possi-
bly describe the data equally well; at this stage these are
empirical fittings only.

Normalizing out the first two moments resulted in a
universally-shaped distribution with zero mean and unit
standard deviation, and discarded information on possible
relations between the moments in the original, physical
units. Plotting these moments one versus the other, one point
for each distribution for both bacteria and yeast [Figs. 3(a)
and 3(b)], reveals that the variance defines a curve in the
plane with very little scatter, that can be well fitted by a
quadratic function y ¼ Ax2 þ Bxþ C. Figure 3(c) shows a
similar relation for many measurements on yeast popula-
tions done by fluorescence microscopy [11].

Further support of this relation between moments is
found from transient experiments, in which we use the
chemostat to switch medium between inducing and repres-
sing conditions of gene expression while still maintaining
an exponentially growing culture. Figure 4 depicts the
distributions of GFP under the control of LacO promoter
in bacteria switched from repressing glucose to inducing
lactose medium [Fig. 4(a)] and the GAL10 promoter in a
yeast population switched from inducing galactose to re-
pressing glucose medium [Fig. 4(b)]. It is seen that the
qualitative features of the distributions are maintained

throughout the transient but with a time-varying exponen-
tial tail. The insets show that in these experiments, as in the
steady states, the variance and mean define a quadratic
relation with very little scatter.
Finally, we note the quadratic dependence between vari-

ance and mean is exhibited also by published genome-wide
measurements [17,21,24]. In previous work variation was
characterized by the ratio between variance and mean
squared (‘‘noise’’); this measure is a nonlinear combination
of moments and does not provide direct information about
the relation between them in the presence of measurement
errors. When plotted directly, the data are seen to approxi-
mate a quadratic function over a broad dynamic range of
measured variables (see supplemental Fig. 5 [20]).
The generality of the universal behavior that we have

found remains to be characterized in further experiments
and organisms. Clearly it does not necessarily apply to
every biological realization; for example, experiments
have shown that under some conditions the number of
lac permeases in bacteria exhibits a bimodal distribution
([25]; the same group later concluded from a genome-wide
study that such distributions are rare [21]). However, an
observation of fundamental importance here is the exis-
tence of a universality class in biology. The fact that
populations of two distinct microorganisms in a broad
range of biological contexts exhibit protein distributions
that can be scaled by mean and standard deviation to a
universal curve is highly significant. The entailed conclu-
sion is that the shape of these distributions cannot convey
information on specific biological molecular or cellular
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FIG. 3 (color online). Relation between mean and variance.
(a) Mean and variance for all experiments in bacteria that appear
in Fig. 2 using the same symbols. (b) The same for yeast
experiments. (c) Mean and variance for a large collection of
experiments on yeast populations, where steady state protein
distributions were measured by fluorescence microscopy [11].
GFP was expressed under the control of GAL10 on high or low-
copy number plasmids, in different background strains grown in
chemostat cultures with different dilution rates and limiting
nutrients. Fits: y ¼ Ax2 þ Bxþ C with the parameters: (a)
A ¼ 0:46, B ¼ �0:39, C ¼ 0:1. (b) A ¼ 0:17, B ¼ 3:1,
C ¼ �1:54. (c) A ¼ 0:167, B ¼ �0:31, C ¼ �0:015. The
data are presented in three panels since fluorescence is not
calibrated and therefore different sets of experiments performed
under different conditions contain an arbitrary scale factor.
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FIG. 4 (color online). Distributions under transient dynamics.
Populations of bacteria (a) and yeast (b) were grown in chemo-
stat to steady state and then switched to different medium. Main
figures show protein distribution along time; insets show mean
and variance throughout the transient. (a) Bacteria were grown to
steady state in glucose and then switched to high concentration
of lactose. As a result, an overshoot of induction was seen (blue
x; broadest distribution) followed by an adaptive response until a
steady state in lactose was reached (green triangles). Then the
culture was switched again to glucose (last two distributions,
black crosses and magenta squares). (b) Yeast cells were grown
in chemostat to steady state in galactose (broadest distribution;
red circles), then switched to glucose. The tail of the distribution
gradually decreased following the switch until a very narrow
distribution (red stars) was reached. In both experiments the
mean and variance displayed a quadratic relation (insets).
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mechanisms related to any of the control parameters
covered by our experimental conditions. Together with
the observed relation between the variance and mean
� ¼ �ð�Þ, (and regardless of its precise functional
form), these results imply that by measuring a single
variable, e.g., the mean, the entire protein distribution
can be reconstructed:

fðx ; ~pÞ ¼ ’

�

x��ð ~pÞ
�ð�ð ~pÞÞ

�

¼ fðx ;�Þ: (2)

If protein distributions do not reflect any single dominant
molecular or cellular mechanism, they must be the inte-
grated outcome of a large number of stochastic events. The
masking of individual stochastic events by an integration of
many of them is well known in the case of the central limit
theorem. Our data, however, exhibit a universal non-
Gaussian skewed exponentially tailed distribution, imply-
ing that if a similar masking exists here then some of the
conditions of the central limit theorem are not fulfilled.
What can one say from the data about the possible candi-
dates of these unfulfilled conditions?

The resemblance of the universal curve to a log-normal
distribution immediately raises the possibility of a multi-
plicative process: if cellular protein content was the prod-
uct of a large number of independent random variables
then its distribution would approximate a log-normal

Lðx;m; sÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffi

2�s2
p e�ðlnx�mÞ2=2s2 (3)

wherem ¼ hlnxi and s2 ¼ varðlnxÞ. This distribution, with
a shift parameter added, exhibits scaling by the first two
moments and a quadratic relation between variance and
mean only if the parameter s is kept fixed. However, this is
inconsistent with the interpretation of the distribution
shape arising universally from a product of random varia-
bles, since any change in the variance or number of these
variables alters the parameter s. We conclude that, despite
the apparent similarity of any single measured distribution
to a log-normal, the scaling properties of the data set as a
whole (Figs. 2 and 3) cannot be explained by a product of
many random variables.

A second possibility is that the fluctuations reflect a sum
of many random variables which are not independent but
rather strongly correlated. This is plausible from a biologi-
cal point of view, since the different processes that
contribute to the protein content of a cell are indeed
strongly correlated and reflect different aspects of the
same cell’s individuality. Moreover considering the protein
content as being accumulated over time by many random
events, these events are temporally correlated; this can be
deduced from single-cell measurements of phenotypic
traits along time that typically show a correlation over a
few generations [21,26]. These arguments support a picture
where protein fluctuations arise as an integration of random

variables correlated in time as well as constrained by
correlations to other variables.
Non-Gaussian universal distributions with qualitatively

similar features to those measured here were observed in
complex physical systems where fluctuations in global
variables were measured. Examples include turbulent
flows, magnetization in spin systems and other equilibrium
systems near phase transitions as well as nonequilibrium
systems [27,28]. In many of these systems, the universal
distributions could be well described by one of three
universality classes of extreme value statistics. Recent
theoretical work has illustrated a mapping between the
extreme values of a set of independent identically distrib-
uted random variables and the sum of nonidentically
distributed ones [30], showing that they have the same
non-Gaussian distribution. This raises also the possibility
that the measured fluctuations arise from a sum of random
variables that are not identically distributed, and reflect an
underlying nonstationary process [31].
Although there is no established theory and the topic is

under debate [29], much research has recently been de-
voted to the understanding of this phenomenon using scal-
ing arguments [27] and models of special cases [30].
Inspired by this line of thought we fitted our data to the
GEV distributions and found that it could be best described
by the Frechet distribution

Fðx ; k;m; sÞ ¼ 1

ks

�

x�m

s

��ð1=kÞ�1
e�ð½x�m�=sÞ�ð1=kÞ

: (4)

While some individual experiments could be better de-
scribed by a log-normal or Gamma distribution, the pooled
dataset was significantly better fit by the Frechet distribu-
tion than any other function we have tried (supplementary
Figs. 3 and 4). More importantly, it can be shown that a
family of Frechet distributions with fixed shape parameter
k exhibits both properties of the data—scaling by the first
two moments and quadratic dependence of variance on
mean (supplemental analysis [20]). Thus, while it may be
possible to choose parameters where the log-normal and
Frechet distributions are practically indistinguishable over
the finite range of measurements, their scaling and sym-
metry properties are different and only the latter are con-
sistent with the data. In spite of these consistencies, we still
regard the fit to a Frechet distribution as a phenomenologi-
cal description of the data. In the absence of a theory, it is
not possible to exclude at this point that other distributions
may describe the data equally well. Recent work has
illustrated that much ambiguity can occur when inferring
the details of a stochastic process from the phenomenology
of its statistical properties [31].
The analogy between a cell population and the above

mentioned physical systems is still suggestive at this time.
However our results call for understanding of the observed
universality and for connecting it with other physical sys-
tems exhibiting a similar behavior. The connection is not
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straightforward; a population of cells is not a statistical
ensemble of separate realizations as they exhibit long-term
correlations [11,26] and slow collective modes in gene
expression [32]. Searching for such a connection marks a
challenging direction for future research at the interface
between biology and the physics of complex systems.
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