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Cells adjust their transcriptional state to accommodate environmental and genetic perturbations.
An open question is to what extent transcriptional response to perturbations has been specifically
selected along evolution. To test the possibility that transcriptional reprogramming does not need to
be ‘pre-designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted
yeast cells with a novel challenge they had not previously encountered. We rewired the genome by
recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory
system, the GAL network responsible for galactose utilization. Switching medium to glucose in a
chemostat caused repression of the essential gene and presented the cells with a severe challenge to
which they adapted over approximately 10 generations. Using genome-wide expression arrays, we
show here that a global transcriptional reprogramming (41200 genes) underlies the adaptation.
A large fraction of the responding genes is nonreproducible in repeated experiments. These results
show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory
network supports adaptation of cells to novel challenges.
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Introduction

Recent genome-wide expression measurements have revealed
that a broad range of environmental perturbations and gene
deletions lead to a global transcriptional response in which a
sizeable fraction of the genome responds to the perturbation by
induction or repression (Gasch et al, 2000; Jelinsky et al, 2000;
Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). The
hallmark of these large-scale responses is a rapid transient
followed by relaxation, within a cell generation time, to a
steady state (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al,
2004). It is not known, however, what fraction of genes within
such massive transcriptional responses is essential to the
specific cellular demands. Using known gene annotations, the
fraction of responding genes directly relevant to the perturba-
tion is usually found to be very small, raising the question what
is the functional role of the rest. On more general grounds, one
wonders whether the transcriptional reprogramming following
a perturbation has been specifically selected along evolution
toward this challenge, or reflects the fundamental large-scale
connectivity and dynamic characteristics of the transcriptional
regulatory network (Kafri et al, 2005). If the transcriptional
response has been specifically selected, one expects to find the
coexpression of genes with cofunctionality reflecting the
specific demand imposed by the challenge. This requires some
degree of overlapping regulatory cascades among responding

genes (Chu et al, 1998; Spellman et al, 1998; Hughes et al, 2000;
Jansen et al, 2002; Segal et al, 2003; Ihmels et al, 2004;
Kharchenko et al, 2005). This regulatory mode then has been
selected in evolution and is ‘pre-designed’ to allow transcrip-
tional reprogramming to meet specific environmental and
genetic challenges. An alternative but not mutually exclusive
possibility is that the massive transcriptional response to
perturbations is a universal feature of the underlying regulatory
network, a necessity of its large-scale interactions across
functional groups (intermodular interactions). A genetic or
environmental perturbation then causes a response that is
largely nonspecific toward the perturbation. This response of
the genetic network in turn allows efficient plastic adaptation of
cellular metabolism to a broad range of unforeseen challenges.
There are indications in the literature that similar phenotypes,
including similar metabolic states and growth rates in micro-
organisms, can be supported by different underlying expression
states (Fong et al, 2005). The relation between metabolism and
transcription is not a simple one-to-one, owing to the flexibility
and robustness of the metabolic network and cells can generate
multiple transcriptional states to achieve the desired metabolic
condition. The question then arises to what extent cells use this
transcriptional flexibility to address unforeseen challenges on
physiological timescales (not through new mutations). Such
freedom is crucial for a high evolvability potential (Gerhart and
Kirschner, 1997; Kirschner and Gerhart, 1998).
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To study the generality and plasticity of transcriptional
reprogramming, we challenged yeast cells with a novel
perturbation they had not encountered before along their
history in evolution. This approach eliminates the possibility
that the regulatory system has been specifically selected to
address this perturbation. A strain of the yeast Saccharomyces
cerevisiae was engineered to recruit the gene HIS3, an essential
enzyme from the histidine biosynthesis pathway (Hinne-
busch, 1992), to the GAL system, responsible for galactose
utilization (Stolovicki et al, 2006). The arbitrary regulatory
linkage made between these two conserved and highly specific
modules represents an unforeseen perturbation for the cells. In
our strain, HIS3 is under the exclusive control of the GAL
regulatory system and is entirely detached from its natural
regulation. The GAL system behaves as a strong switch and is
heavily repressed when switched to a glucose-containing
medium (Johnston et al, 1994; Carlson, 1999; Braun and
Brenner, 2004). Therefore, upon switching to a medium
containing glucose and lacking histidine, the GAL system
and with it HIS3 are highly repressed immediately following
the switch and the cells encounter a severe challenge. We have
recently shown that a cell population carrying this rewired
genome can adapt to grow competitively in a chemostat in a
medium containing pure glucose (Stolovicki et al, 2006). This
adaptation of the population occurred on a timescale of B10
generations during which the ability to grow competitively in
glucose was stably inherited in the population. Moreover,
introducing 3-amino-triazole (3AT), a competitive inhibitor of
HIS3p, caused a significantly larger environmental pressure
and led eventually to similar adaptive response, albeit on
somewhat longer timescales (Stolovicki et al, 2006). It was
shown that the adaptation process involved the tuning of the
HIS3 and all the GAL genes transcription levels according to
the amount of inhibitor in the medium, but the mechanism of
this transcriptional reprogramming process remained un-
known. Yeast cells had not encountered recruitment of HIS3
to the GAL system along their evolutionary history and their
genome could not possibly have been selected to specifically
address glucose repression of HIS3. Nevertheless, we show
here that the adaptation process following the switch to
glucose-based medium in the chemostat involves a global
transcriptional response of hundreds of genes, emerging at the
onset of the medium switch and relaxing on the timescale of
the population adaptation. This global transcriptional re-
sponse is sensitive to the applied pressure by HIS3p inhibition
and thus underlies the adaptation of the cells to the unforeseen
challenge. The observed response is largely nonspecific;
repeated experiments result in low reproducibility of their
transcriptional states showing that a large fraction of the
responding genes, although enabling the adaptation process,
are nonspecific toward the challenge.

Results

Figure 1 shows the dynamics of the population’s cell density
(blue lines, measured by optical density (OD) and reflecting
the integrated metabolic state of the population) following a
medium switch from galactose to glucose in the chemostat
without (A) and with (B) 3AT. The transient population

responses converged within 10–20 generations to a stable
steady state in glucose. There are four phases of the population
dynamics (Stolovicki et al, 2006). In phase I, The GAL genes
and HIS3 linked to them were repressed, but the OD transiently
increased following the switch into glucose metabolism, due to
existing resources (e.g. histidine) in the population from the
previous galactose steady state. Then, the population fitness
decayed in phase II due to improper expression levels of HIS3,
followed by a recovery after a few generations (III) to a steady-
state level (IV) with a cell density similar to the peak in phase I.
In phase IV, the cells are fully adapted to grow in pure glucose,
tuning the expression of HIS3 to the appropriate level
according to the environmental pressure (level of 3AT)
(Stolovicki et al, 2006).

To study the genome-wide transcriptional response, eight
samples of cells harvested from the chemostat (see Materials
and methods) at time points along the different phases of the
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Figure 1 Adaptive population dynamics and associated global transcriptional
response. Population dynamics as measured by the cell density in the chemostat
(blue line) for (A) no 3AT and (B) 40 mM 3AT. The population in each
experiment exhibited four phases (I–IV) of dynamics as depicted. Expression
arrays were measured at eight time points along the course of the population
adaptation following the medium switch from galactose to glucose (at t¼0).
A SOM clustering method (see Materials and methods and Supplementary
Figure S1) led to two dominant global clusters: induced (red; a—543, b—701
genes) and repressed (green; a—692, b—998 genes). Note the symmetry
between induced and repressed clusters (correlation coefficient between the two
clusters’ mean expression profiles, a: �0.92, b: �0.98). The error bars present
the standard deviation of expression values among genes belonging to each
cluster. Note the logarithmic scale. The generation time equals chemostat dilution
time� ln2B5 h.
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population adaptation were analyzed by expression arrays for
the two experiments, with and without 3AT. Genome-wide
measurements of the mRNA expression levels normalized by
their expression in galactose steady state revealed that a
sizeable fraction of the genome responded by induction or
repression to the switch into glucose (Figure 2). Superimposed
on the OD traces, Figure 1 shows the results of a clustering
analysis (Tamayo et al, 1999; Shamir et al, 2005) of the
expression of genes as measured by the arrays along time in
the experiments (see the details of the clustering analysis in
Supplementary Figure S1). This analysis revealed two
dominant clusters, each containing hundreds of genes in each
experiment. The genes of these clusters responded to the
medium switch to glucose by a strong transient induction or
repression followed by relaxation to steady state on the
timescale of the population adaptation process, approximately
10 generations. During this relaxation period, the external
conditions were kept constant in the chemostat. The two
clusters in each experiment are characterized by similar but
opposite dynamics. The striking symmetry between induction

and repression (Gasch et al, 2000; Nautiyal et al, 2002)
suggests that a global conservation principle, possibly
competition for cellular resources, is involved in the dynamics
of the genetic regulatory system. These results are not sensitive
to the clustering method (data not shown).

We first analyzed the clusters that appeared in the
transcriptional response based on known annotations. In
the cluster that is transiently repressed, we found the genes of
the GAL system, exhibiting the expected transient repression
upon the switch to glucose followed by recovery of the
expression, which is correlated with the population dynamics
(see Supplementary Figure S2 in agreement with previous k-
PCR results; Stolovicki et al, 2006). An example for transiently
induced modules is provided by the glycolysis and ribosomal
protein genes (Supplementary Figure S3). The glycolysis and
ribosomal genes are known to be overexpressed in glucose
compared to galactose (Yin et al, 2003). Surprisingly, following
the transient induction, these groups exhibited relatively fast
relaxation to a steady-state level, similar to the one in galactose
medium. More globally, we characterized the biological
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Figure 2 The genome-wide transcription pattern. The raw transcription levels at eight time points for the two experiments, (left) no 3AT, (right) 40 mM 3AT, in a color
code: red—induced, green—repressed. There are a total of 4148 genes that passed all filters (see Materials and methods). The medium switch from galactose to
glucose is marked and the numbers above the columns are the measurement points as shown in Figure 1. Note the differences between the patterns of expression for
the two experiments (rows correspond to the same gene in both experiments).
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functions in each of the two main clusters in Figure 1, using the
Gene Ontology annotations (SGD) (Materials and methods). In
both experiments, the transiently induced cluster was sig-
nificantly enriched for general energetic and biosynthesis
modules such as glycolysis, ribosome biogenesis, macromo-
lecule biosynthesis and also for regulatory genes involved in
the proteins translational machinery. By contrast, the transi-
ently repressed cluster was significantly enriched for modules
that are assigned to DNA replication, DNA repair and
regulation of transcription. This distribution of biological
functionalities between the two clusters suggests that the
induced cluster corresponds mainly to cytoplasmic processes,
whereas the repressed cluster to processes in the nucleus
(Po0.005 in cell compartment enrichment analysis). The
functional enrichment analysis is a statistical method that is
based on the tradition of assigning well-defined functions to
specific genes. This approach, however, explains only a small
fraction of the global response as shown below.

One is led to ask whether the observed expression dynamics
reflect a known stress response (Gasch et al, 2000; Causton
et al, 2001). In particular, the repression of HIS3 raises the
possibility that the cells are under amino-acid starvation
(Natarajan et al, 2001). We have performed a detailed
comparison between the genomic transient response observed
here with and without 3AT, at different time points of the
dynamics, and published large-scale results of known stress
responses (Supplementary Table S1). The maximal number of
induced genes overlapping between the transient response in
our experiments and the stress response are 39 and 31 (out of
201) for the no 3ATand 40 mM 3AT, respectively. Similarly, the
number of overlapping repressed genes are 85 and 48 (out of
320) for the no 3ATand 40 mM 3AT, respectively. This analysis
shows that the transcriptional response at any time point of
our experiment has a very low overlap with the universal
stress response observed for a wide range of environmental
stresses (Gasch et al, 2000; Causton et al, 2001). It is also not
correlated with the typical response to amino-acid starvation
(Natarajan et al, 2001) (Supplementary Table S2). In particular,
the general amino-acid response (regulated by Gcn4) (Hinne-
busch, 1992) does not operate in our experiments at any point
even when a high level of 3AT is applied. Additionally, all
known specific responses to stress are characterized by
transient induction or repression with relaxation to steady
state within a generation time (Gasch et al, 2000; Koerkamp
et al, 2002; Wu et al, 2004). Thus, given the different
transcription patterns and the extremely long timescales of
the transient response observed here, we conclude that it is not
a typical stress or starvation response.

We used 3AT as a control parameter, which enabled us to
distinguish specific metabolic effects, including the switch of

carbon sources from galactose to glucose, from regulatory
changes induced by the increase in the environmental pressure
applied directly on the rewired gene, HIS3. Both populations
grown with and without 3AT initiated from very similar steady-
state patterns of expression in galactose (Supplementary
Figure S4). Thus, 3AT by itself does not cause a significant
modification in the expression state. This is consistent with
previous work showing that 3AT does not introduce significant
side effects besides direct inhibition of the HIS3p, and thus has
similar effect to reducing HIS3 effective expression levels
(Marton et al, 1998). The gene content overlap between the
transiently induced and transiently repressed clusters in both
experiments (with and without 3AT) is only partial, 15% (389
genes out of 2545 assigned to the induced or repressed
clusters), but significantly larger than would expected by
chance (Supplementary Figure S1c). This partial overlap
contains also the genes responding to the carbon source
switch from galactose to glucose. This result indicates that the
switch of carbon sources caused only a small part of the
response, whereas the major effect is due to the HIS3
repression pressure.

To assess the reproducibility of the transcriptional response,
we repeated the chemostat experiment with no 3AT. The
population density exhibited reproducible adaptation dy-
namics and the same glucose steady state, but nevertheless
the transcriptional response showed significant variations. We
quantified the degree of reproducibility by computing the
correlation coefficient among expression patterns (Supple-
mentary Figure S5). Within a single experiment, the correla-
tion between time-separated glucose steady states is high
(R¼0.8–0.9). This high value is close to the reproducibility in
duplicate arrays (R¼0.9). Even for time points separated by as
much as 237 h, the correlation coefficient is R¼0.9, showing
the stability of this pattern over many generations. By contrast,
between different experiments, the correlation coefficient is
significantly lower (R¼0.32). The reproducibility of transient
transcriptional patterns showed similar trends. The correlation
coefficient between the initial transient responses following
the medium switch to glucose (phase I of the dynamics in
Figure 1) in repeated experiments is very low (Ro0.1)
compared to the high correlation between two transient points
within the same chemostat experiment (R¼0.5–0.9; Supple-
mentary Figure S6). An additional way to assess the
reproducibility is to compare the total number of genes
significantly induced or repressed in each case and to compute
the degree of overlap among these groups of genes. Table I
shows the number of genes significantly induced (4twofold)
or repressed (otwofold) in repeated experiments both in the
transients and the steady states. It shows that these numbers
vary significantly among the experiments, consistent with the

Table I Comparison of the total number of genes significantly induced or repressed and the degree of overlap among these groups of genes in different experiments

Total number
of genes

No-3AT,
first repeat

No-3AT,
second repeat

40 mM
3AT

Fraction overlap
in repeats

3344 418 830 524 7% (85 genes) Transiently induced (42-fold)
514 780 960 14% (160 genes) Transiently repressed (o2-fold)

3728 90 136 217 10% (20 genes) Induced at steady state (42-fold)
262 432 464 30% (159 genes) Repressed at steady state (o2-fold)
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behavior of the correlation coefficients. The fraction of
overlapping induced or repressed genes in the different
experiments is small (10–30%; Table I), with no significant
enrichment for biological functionality (P40.001) outside of
the expected induction of the glycolysis genes and repression
of the GAL genes. Thus, the majority of the responding genes
do not overlap at any stage in repeated experiments. We
conclude that a non-negligible portion of the genes that
changed their expression during the adaptation process does
not have a well-defined and reproducible function in the
challenging environment.

Our experiment enables us to characterize the dynamics of
the transcriptional response in addition to its gene content.
Upon the switch to glucose, the average dynamics of the
transcriptional response in the two experiments, with and
without 3AT, seem somewhat similar (Figure 1 and Supple-
mentary Figure S4). However, the larger pressure applied by
the 3AT results in a markedly higher correlation among the
temporal patterns of the hundreds responding genes.
Figure 3A compares the array data in color code for the two
experiments. It is seen that the emergent pattern of transcrip-
tion exhibited a higher degree of order by the introduction of
high external pressure in the form of 3AT; more than 25% of
gene pairs exhibited absolute correlation coefficient larger
than 0.9 in the high-pressure experiment compared to 5% in

the low-pressure one (Supplementary Figure S7). Figure 4
compares the distributions of correlation coefficients among
all genes for the two experiments. Note the significant peaks at
the high positive and negative correlation edges for the 3AT
experiment compared with a distribution peaked on zero
correlation for the experiment without 3AT.

Figure 3 Environmental pressure leads to highly correlated transcriptional response. (A) Color-coded figure of transcriptional response for the eight time points in the
two experiments, with no 3AT (top) and with 40 mM 3AT (bottom). The genes were ordered in each experiment according to the clusters presented in Figure 1. The
significant increase in coherency of the response with the increase of environmental pressure by 3AT is apparent in the image. Expression profiles of genes belonging to
glycolysis (B), histidine (C) and purine (D) pathways. Note the emergence of highly correlated patterns of transcription owing to the environmental pressure in the lower
panel. A given functional module simultaneously contains correlated and anti-correlated trajectories.
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Observation of the transcriptional temporal trajectories for
specific metabolic pathways in our experiments illustrates the
different contributions to the correlated dynamics (Figures 3B–
D). A general energetic module, such as glycolysis, exhibited
similar patterns of induction and relaxation in both experi-
ments (Figure 3B). This, however, was not the general
behavior. We found that more than one-third of the known
metabolic gene modules (30 out of 88 modules described in
KEGG (Kanehisa et al, 2004), Po0.05, see Materials and
methods) exhibited high correlation in expression among their
genes when the environmental pressure was high (40 mM 3AT,
average absolute correlation 0.5570.06), but not when it was
low (no 3AT, average absolute correlation 0.3970.04). As an
example, Figure 3C shows the histidine biosynthesis pathway
and Figure 3D the purine pathway. Note the highly ordered
trajectories in the lower panels (with 3AT) compared to the
disordered ones in the upper panels (no 3AT). These pathways
are directly connected to the gene under pressure, HIS3, but as
mentioned above, these modules were not unique in exhibit-
ing such high correlation when the environmental pressure
was high (see Figure 3A). The increase in expression
correlation for a sizeable fraction of the genome at higher
pressure on HIS3 indicates that a global transcriptional
regulatory mechanism is in operation, rather than a local

specific one. Interestingly, genes belonging to the same
metabolic pathway exhibited simultaneous positively and
negatively correlated dynamics. Even genes encoding for
enzymes residing along a linear metabolic pathway exhibited
negatively correlated dynamics (Ihmels et al, 2004; Kharch-
enko et al, 2005). These general features in the 3AT
experiment, highly correlated expression dynamics and
simultaneous positively and negatively correlated trajectories,
appeared also for genes belonging to the same protein complex
(Jansen et al, 2002). For example, Figure 5 shows the
expression trajectories for the nucleotide excision repair
(NER) protein complex. The generality of these results are
demonstrated by comparing the gene-pair correlations be-
tween GAL1 and all other genes for the two experiments, with
and without 3AT (Figure 6). Note that many of the low-
correlated gene pairs in the no 3ATenvironment exhibited high
correlation when 3AT is present.

Taken together, the highly correlated response observed
here reveals that coexpression does not necessarily imply co-
functionality (Niehrs and Pollet, 1999) and can exist among
genes residing in different functional modules. Indeed, the
highly correlated pattern of expression spans the entire
metabolic network across modules and correlations do not
decay for genes residing in remote modules (Kharchenko et al,
2005) (Supplementary Figure S8). These results indicate that
the crosstalk between functional modules plays important role
in enabling the emergence of a proper metabolic state. The
opposite is also true—the symmetric patterns of induced and
repressed transcriptional responses observed within modules
means that co-functionality does not necessarily imply
coexpression and there is no simple connection between
transcription and metabolism.
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The long timescale of the transcriptional response raises the
question whether it is the result of a population level selection
process (Ferea et al, 1999) or a cellular process that is faithfully
transmitted along generations (Molinier et al, 2006). In a
selection process, the initial state is an average over a mixture
of a large number of subpopulations, one of which will
eventually take over and determine the final state. Therefore,
one expects no significant correlation between the initial and
final states at the level of the population averages. Figure 7
shows that the final steady state in our experiment is highly
correlated with the initial transient transcription level follow-
ing the medium switch from galactose- to glucose-containing
medium. The final steady state is well predicted by the initial
transient response. A gene exhibiting higher (lower) steady-
state transcription level in glucose relative to that in galactose
exhibited an overshoot (undershoot) and then relaxed to the
proper steady state on the population adaptation timescale
(Figure 1B). Thus, the transcriptional reprogramming was
initiated instantaneously with the medium switch from
galactose to glucose, and the emergent pattern of transcription
was faithfully transmitted along generations till the conver-
gence to steady state. We conclude that the observed
expression dynamics was not the result of a selection process
on the population, but rather a plastic transcriptional response
of the cellular regulatory network.

Discussion

We presented yeast cells with a severe perturbation they had
not encountered along their evolutionary history and to which
they adapted within physiological timescales. We have found
that underlying this adaptation is a global transcriptional
response involving a sizeable fraction of the genome, which
relaxed on the timescale of the population adaptation, of the

order of 10 generations. This response of the cells in the
chemostat is a genuine transcriptional reprogramming process
and not due to a population selection mechanism. Increasing
the pressure applied on the rewired gene HIS3 resulted in a
significant increase in correlations among hundreds of genes
residing in different modules. This sensitivity to the level of
pressure imposed by the novel challenge shows that transcrip-
tional response is directly involved in the cellular adaptation
process. The highly correlated global transcriptional response
is consistent with the massive crosstalk known to exist
between functional modules (Ideker et al, 2001; Tong et al,
2001) and the dynamic properties of the regulatory network
(Luscombe et al, 2004). The characteristics of the transcrip-
tional reprogramming observed here support the conclusion
that it is a universal feature of the transcriptional regulatory
system reflecting its plasticity and transgeneration stability.

The novelty of the challenge presented to the cells excludes
the possibility that the transcriptional response had been
specifically selected in evolution. Indeed, analyzing the details
of the transcriptional response revealed that, for a large
fraction of the responding genes, there is no simple biological
interpretation, connecting them to the specific cellular
demands imposed by the novel challenge (e.g., amino-acid
production). In particular, surprisingly we found that genes
belonging to the same functional module, even those active
within a linear chain of a biosynthesis pathway, might respond
in opposite directions; some are highly induced whereas the
others are highly repressed. Thus, an important conclusion of
this work is that the global transcriptional response to an
unforeseen challenge cannot be explained by simple cellular or
metabolic logic. This is to be expected if the response had not
been specifically selected in evolution and was not pre-
designed for the challenge. Support for this conclusion is found
in the fact that repeating experiments do not reproduce similar
transcription patterns neither in the transient phase nor in the
adapted state in glucose.

Nevertheless, our data raise the following apparent paradox
to this conclusion: if the adaptation to the novel perturbation
had not been pre-designed, how could the ‘correct’ direction of
the transcriptional response (the ‘correct’ set of induced and
repressed genes) be instantaneously generated (Figure 7)? A
plausible explanation is that the direction of the transcriptional
response is not in itself adaptive, but rather reflects the large-
scale interactions among functional modules of the regulatory
network. This possibility is supported by the symmetry
between the dynamics of induced and repressed genes. The
mechanism underlying the broad nonspecific transcriptional
response is yet to be determined. One possibility is that a small
number of master regulators are responsible for this response.
Alternatively, in the absence of a specific transcriptional
regulatory response shaped in evolution toward a specific
demand, many parallel regulatory pathways can freely
respond without initially having a constraining feedback.
Global mechanisms, such as chromatin remodeling, could be
involved in such a process. Once a global transcriptional
response emerges, an adaptive metabolic response could be
generated provided the underlying expression pattern is broad
enough to support it. Metabolic requirements feeding back
on transcription regulation cause the relaxation of the tran-
scriptional response in magnitude, but cannot affect its
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Figure 7 Steady-state transcriptional pattern is well predicted from the
transient response. The steady-state expression level (average of the two
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level (4th time point in Figure 1B) for the experiment with 40 mM 3AT. The
Pearson correlation between the transient response and steady state is 0.76. The
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directionality. The transcriptional reprogramming observed
here then reflects the complex interplay between transcrip-
tional regulation and metabolism. This idea, if correct,
explains the ability of cells to overcome a broad range of
novel challenges and stress environments. If there is no
specific local solution to a perturbation, one that was
specifically shaped in evolution toward this perturbation, the
cells have an alternative general mechanism. A mismatch
between the metabolic requirements and the cellular state
works as a driving force causing a nonspecific large-scale
transcriptional response. The drastic change in the expression
state of the cell opens multiple new metabolic pathways.
Physiological selection works then on these multiple meta-
bolic pathways to stabilize an adaptive state that causes
relaxation of the perturbed expression pattern. This scenario,
involving the creation of a library of possibilities and
physiological selection over this library, is compatible with
our understanding of a broad class of biological systems,
placing the cellular metabolic/regulatory networks on the
same footing as the neural or the immune systems (Gerhart
and Kirschner, 1997).

The way organisms deal with unforeseen changes is one of
the intriguing questions in biology. Recruitment of a gene to a
foreign regulatory system is considered as a powerful driving
force in evolution, responsible for example, for the evolution of
developmental systems (Carroll et al, 2001; Davidson, 2001;
True and Carroll, 2002; Wilkins, 2002; Carroll, 2005). Such
genomic perturbation presents severe challenges to the cell;
the evolvability potential of organisms (Gerhart and Kirschner,
1997; Kirschner and Gerhart, 1998) depends on their ability to
cope with them. The global transcriptional plasticity described
here shows how an efficient adaptive response could emerge
on physiological timescales, a prerequisite for an efficient
evolutionary process.

Materials and methods

Strain and chemostat growth conditions

Experiments were carried out with the haploid yeast strain YPH499
[Mata, ura3-52, lys2-801, ade2-101, trp1-D63, his3D200, leu2D1]
carrying the plasmid vector pESC-LEU (Stratagene) containing the
pGAL1-pGAL10 divergent promoter with HIS3 under pGAL1 (Stolo-
vicki et al, 2006). his3D200 is a deletion that removed the entire HIS3-
coding region plus the upstream promoter region, including the Gcn4
regulatory sequence. Cells were grown in a homemade chemostat
(Stolovicki et al, 2006) in synthetic dropout medium lacking histidine
and leucine with the appropriate amino-acid supplement and 2% of
either pure galactose or pure glucose as the sole carbon source.
Throughout the experiments, the sugar (either galactose or glucose)
was always in excess (maximal consumption of the cells is 25% of the
sugar fed). The medium had the following (concentrations in g/l): 1.7
yeast nitrogen base without amino acids and ammonium sulfate, 5
ammonium sulfate, 1.4 amino-acid dropout powder (without trypto-
phan, histidine, leucine and uracil; Sigma), 0.01 L-tryptophan, 0.005
uracil. Growth in the chemostat was limited by the concentration of the
amino-acid supplement. In the 3AT experiment, 40 mM of the
competitive inhibitor 3-amino-1,2,4-triazole (Sigma), sterilized by
filtration, was introduced into the feeding medium. An online
measurement system (Stolovicki et al, 2006) was used to measure
the OD of cells in the chemostat producing the blue curves in Figure 1.
A homemade cell collector (Stolovicki et al, 2006) was used to
automatically collect samples of cells from the chemostat at precise
time points along the experiment and instantaneously freeze them.
These samples were used for the microarray experiments.

Expression arrays

For each sample, 15 mg of total RNA was isolated from cells using hot
phenol extraction. mRNA was reverse transcribed (superscript II,
Invitrogen) and labeled indirectly with cy5/3 dyes (Amersham) using
amino-allyl dUTP (Ambion). For each time point, two cDNA
microarrays (yeast 6.4 k, UHN microarray center, www.microarrays.-
ca) containing all B6400 yeast ORFs in duplicate (a total of four spots
for each ORF) were hybridized overnight (421C) with the sample
labeled with cy5 and a reference sample labeled with cy3. Arrays were
scanned using a commercial scanner and software (GenePix 4000B,
Axon instruments). For each microarray, cy5/cy3 intensity ratios were
normalized using the Acuty software (Axon instruments), so the ratio
of medians was 1. log2(cy5/cy3) values of all spots for each gene were
averaged for each time point and only genes with at least two high-
quality spots in each time point and full dynamic path along the
experiments were subject for further analysis. Duplicate arrays were
checked to yield high correlated signal for each gene (Supplementary
Figure S5e) and the data from each array were compared to real-time
PCR measurements for various genes from each sample. There were a
total of 4148 genes that passed all filters in both experiments. For all
analyses the log2(cy5/cy3) values in each time point were normalized
to the first galactose steady-state time point.

Clustering analysis

All genes with two-fold change in at least one time point were clustered
using the EXPANDER software (Shamir et al, 2005). The self-organized
maps (SOM) clustering method (Tamayo et al, 1999; Shamir et al,
2005) was applied to the gene profiles, with 16 clusters as a pre-defined
parameter (Supplementary Figure S1). Clusters that show the same
fundamental mean expression profile were joined into two large
clusters presented in Figure 1. These results are not sensitive to the
SOM clustering method and similar results have been obtained with
different methods (data not shown). Enrichment of biological process
was computed for clusters of genes using the GO TermFinder (SGD).
All P-values were computed using the hypergeometric distribution.

Comparing the coherency for KEGG groups
between experiments

We computed the P-value for mean difference between the two
distributions of absolute pairwise correlation of a specific KEGG
(Kanehisa et al, 2004) group, between the no 3AT and 40 mM 3AT
experiment, using the Wilcoxon’s test. All P-values were corrected for
multiple hypothesis testing using false discovery rate.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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