
Theoretical Population Biology 80 (2011) 49–63
Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Dynamic modeling of cooperative protein secretion in microorganism
populations
Yuval Elhanati a,b,∗, Stefan Schuster c, Naama Brenner a,d,∗
a Laboratory of Network Biology Research, Technion — Israel Institute of Technology, Haifa, Israel
b Department of Physics, Technion — Israel Institute of Technology, Haifa, Israel
c Department of Bioinformatics, School of Biology and Pharmaceutics, Friedrich Schiller University of Jena, Jena, Germany
d Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel

a r t i c l e i n f o

Article history:
Received 12 October 2010
Available online 12 April 2011

Keywords:
Microorganisms
Population dynamics
Nonlinear dynamical systems
Protein secretion
Cooperation

a b s t r a c t

Interactions between microorganisms can have a crucial effect on their population dynamics. Typically,
interactions are mediated through the environment by molecules and proteins that are products of cell
metabolism and physiology; they therefore reflect the internal dynamics of the single cell. In this work
we aim to integrate single-cell properties of gene expression that affect indirect interactions between
microorganisms under challenging conditions, into a quantitative model of population dynamics.
Specifically we address the problem of a microbial population secreting a protein that can actively
extract a growth-limiting resource, such as a simple sugar or iron, from the environment. The genes
coding for the protein can undergo random epigenetic transitions between active and silenced states, and
can be repressed by the product of their reaction. We model cooperative and competitive interactions
between protein producing and non-producing phenotypes by nonlinear dynamical systems and analyze
them both in terms of asymptotic states and of transient dynamics. Our model shows that phenotypic
transitions allowa stable coexistence of the twophenotypes, and enables us tomakepredictions regarding
the conditions required for such coexistence and the typical timescales of transient dynamics. It also
shows how repression by the reaction product induces a feedback at the population-environment level
that can result in limit cycle dynamics. The relation of these results to experiments are discussed.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Individuals in a microbial population exhibit many forms of in-
teraction. Typically they interact indirectly through the environ-
ment, for example by secreting and sensing of molecules. Even
more indirectly, while competing for common essential resources,
microorganisms can affect the environment and through it other
members of the population by utilizing these resources with a
varying degree of efficiency (Pfeiffer et al., 2001). All these inter-
actions are mediated by products of cell metabolism and gene ex-
pression, and thus reflect the internal properties and dynamics of
cell physiology. Therefore understanding a population of interact-
ing individuals requires making a connection between the level of
the single cell and that of the population. Here we aim tomake this
connection within a theoretical study of the population dynamics
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of microorganisms which face the task of active resource extrac-
tion from the environment, and interact through ‘‘public goods’’.

Public goods are beneficial resources affecting growth (‘‘fit-
ness’’) positively, whose production is costly to the individual but
once produced they are publicly available. While the concept of
public goods is an abstract and general one, inmicroorganism pop-
ulations it is mostly associated with the expression and secre-
tion of proteins with various functions (Crespi, 2001; West et al.,
2006). Examples of such functions include the production of di-
gestible carbon or iron from a hard-to-access substrate; construc-
tion of biofilms and multicellular structures; conflict with other
microbes or the host immune system in the case of pathogens
(Webb et al., 2003; Griffin et al., 2004; Parsek andGreenberg, 2005;
Kreft, 2005; Modak et al., 2007; Diggle et al., 2007). In the present
work we develop models inspired by the expression and secretion
of molecules that extract a resource from the environment. Inter-
actions between individuals in this case is considered ‘‘coopera-
tive’’, since the production of the protein involves a metabolic cost
which affects growth negatively, while the reaction products are
generally available for uptake also by other neighboring cells and
affect their growth positively (West and Buckling, 2003; Greig and
Travisano, 2004; MacLean and Gudelj, 2006; Hauert et al., 2006;
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MacLean, 2008; MacLean and Brandon, 2008; Gore et al., 2009; Jir-
icny et al., 2010; Schuster et al., 2010). Our goal in this study is to
incorporate dynamic intracellular properties of the processes that
create the interaction-mediating proteins, and to investigate how
they are reflected in the population dynamics, both at asymptotic
and at finite times.

We consider two dynamic effects on the expression of the pro-
teinmediating the interaction: phenotypic switching and feedback
from the reaction product. The first, phenotypic switching, is in-
spired by the secretion of invertase to hydrolyze sucrose by yeast
cells (Carlson and Botstein, 1982). The SUC genes of S. Cerevisiae,
which code for invertase, are mostly located in sub-telomeric re-
gions of the chromosome, making them sensitive to position-
dependent random epigenetic transitions between active and
silenced expression states with variable typical timescales of up
to 15 generations (Gottschling et al., 1990; Louis, 1995; Vega-Palas
et al., 2000). Such transitions render the individual phenotype un-
stable over time and can affect phenotypic coexistence, population
variability and population dynamics.

The second dynamic effect is the repression of the resource-
extracting protein by its own product in the environment. This
effect is seen in at least two well-studied examples: invertase,
which produces glucose from sucrose, is repressed by glucose in
the medium in a manner typical of enzymes related to alternative
carbon sourcemetabolism (Gancedo, 1998); however here glucose
is not introduced from the outside but is a result of the enzyme’s
own activity. This creates a negative feedback between gene
expression at the single cell level, its effect on the environment
and back on gene expression. A similar effect is found in bacterial
siderophore expression (Kummerli et al., 2009). This second
dynamic effect becomes important when cell density is large
enough so that the reaction-product density is high.

Population dynamics in the presence of phenotypic switching,
either random or environment-dependent, has been the subject
of recent work in the context of antibiotic tolerance (Balaban
et al., 2004; Kussell et al., 2005) and of time-varying environments
(Lachmann and Jablonka, 1996; Thattai and van Oudenaarden,
2004; Kussell and Leibler, 2005; Wolf et al., 2005; Acar et al.,
2008; Filiba et al., 0000). These situations describe challenging
external conditions in which population heterogeneity, brought
about by switching, can increase total fitness. The requirement
for active extraction of an essential growth-limiting resource
from the environment is another challenging situation in which
cooperative interactions andheterogeneity can have consequences
on population fitness and survival.

We develop a dynamical model to describe the indirect
interactions betweenmicroorganisms through a common, growth-
limiting resource in the environment, which is not supplied
from the outside but instead is extracted by the microorganisms
themselves. Our mathematical approach relies on continuous
differential equations, enabling us to highlight the dynamic aspects
of the problem in addition to its asymptotic stability properties.
We define two regimes in which the two dynamic processes
mentioned above — random epigenetic switching and repression
by the product — dominate respectively, and study the population
dynamics of competition and cooperation in each regime. We find
that in a homogeneously mixed population, random switching
between an expression state and a silenced state can support
a stable coexistence between the two states if the switching
rate is above a threshold. We also find an interesting decoupling
between the dynamics of competition and cooperation of the
phenotypes in the population on one hand, and the interaction
of the total population with the environment on the other
hand. In the presence of repression by the product, our results
suggest the existence of limit cycle coexistence states. The role
of variable gene expression is examined by considering the total
population density, and in some cases an intermediate value of
variability which maximizes this density is found. Finally we
discuss suggestions for experimental tests of our predictions.
2. Model

2.1. Active resource extraction from the environment by a homoge-
neous population

First we present a model for a homogeneous population of
microorganisms that secrete a resource-extracting protein. This
will enable us to present the modeling framework and the basic
underlying assumptions, which are also used in the subsequent
models with a heterogeneous population.

Imagine a population of microorganisms secreting a protein
into the environment. The protein is involved in a chemical reac-
tion with an external substrate that results in a free concentration
of a growth-limiting resource. The resource s governs the popula-
tion growth rate through a sublinear monotonous function, such
as theMonod functionµ(s) = µ0

s
s+k . Assuming that the biochem-

ical reaction which produces the resource is rapid relative to gene
expression and growth, we average over its dynamics and repre-
sent the amount of the reaction product — the growth-limiting re-
source — as directly depending on the population concentration u.
The rate of resource generation ṡ is therefore a function of this con-
centration u and of the available substrate in the environment. In a
typical situation the amount of available substrate is limited, there-
fore a reasonable dependence on u is that of a Michaelis–Menten
kinetics: ṡ = c u

u+z , or more generally an increasing and saturating
function g(u). The system of equations governing the dynamics of
the two variables, population and resource concentrations, is then
in dimensionless units:

u̇ = u(µ(s) − 1)
ṡ = g(u) − dµ(s)u, (1)

where time is normalized by the death rate and d is the inverse
yield factor. Nontrivial fixed point solutions with nonzero (u∗, s∗)
exist for this system if the condition µ(s∗) = 1 can be satisfied,
similar to a simple limiting-resource system. However because
the resource is not supplied from outside but extracted by the
population, an additional condition must be fulfilled, namely a
positive balance between resource extraction and consumption
(d < 1). (See Appendix A for derivation and analysis of themodel).

2.2. Dynamics of exoenzyme expression: resource extraction with
phenotypic switching

To model the dynamics of exoenzyme expression, we describe
cells as being in one of two possible phenotypic states, coarsely
representing gene expression states: a producing state, with pop-
ulation density u, and a non-producing state with respective den-
sity v. The well-mixed growth-limiting resource s now creates a
homogeneous indirect interaction between the two phenotypic
sub-populations. Producing cells grow at a rate smaller by a factor
R (R > 1) at all values of s, representing the metabolic cost of ex-
oenzyme production and secretion. Any effect that causes cells to
switch between producing and non-producing states is described
by transition rates b1(s), b2(s) between them. Making several ad-
ditional simplifying assumptions the equations in dimensionless
units now take the form

u̇ = (µ(s) − 1)u − b1(s)u + b2(s)v
v̇ = (Rµ(s) − 1)v + b1(s)u − b2(s)v

ṡ =
u

u + 1
− d(u + v)µ(s).

(2)

(See Appendix B for details on the assumptions and non-
dimensionalization.) The transition rates b1(s), b2(s) can be con-
stant or environment dependent (see below). If they vanish, b1 =

b2 = 0, each phenotypic state is perfectly inherited bynext genera-
tions and themodel reduces to twodistinct sub-populations. In this
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case there cannot be stable population growth, and asymptotically
there are only two possibilities: no population at all (u = v = 0
with an arbitrary value of s), or an unstable population consist-
ing of only producing cells


u =

1
d − 1, v = 0, µ(s) = 1


. In this

case, under invasion by non-producing cells, this population will
evolve toward extinction since the extracted resource is essential
for growth. If the resource is not essential but only beneficial for
growth, µ(0) > 0, the population will not become extinct but
the non-producing sub-populationwill take over (see Appendix B).
Much recent work has focused on this case of two completely sta-
ble phenotypes: Synthetic biology was used to realize this situa-
tion by creating two different genotypes by mutants which either
constitutively express or not express the protein at all (Greig and
Travisano, 2004; MacLean and Gudelj, 2006; Ross-Gillespie et al.,
2007, 2009; Chuang et al., 2010).

In natural situations microorganisms do not maintain one
expression state or another for infinite time nor with infinitely
stable inheritance, and therefore the transition rates b1, b2 in
the above model are generally nonzero. In the following sections
we consider two special cases of the model that represent two
dynamic properties of gene expression, random switching and
repression by the reaction product, and study the resulting
population dynamics.

3. Results

3.1. Random epigenetic transitions between active and silenced gene
expression states

Yeast invertase can be secreted outside the cell and hydrolyze
sucrose. It can be expressed by one of several genes in the SUC
family (Carlson and Botstein, 1983). The position of most of these
genes near the telomeres can result in cells slowly and randomly
switching between an active and a silenced expression state
(Gottschling et al., 1990; Louis, 1995; Vega-Palas et al., 2000). This
instability is the primary dynamical aspect of invertase expression
and secretion when cell density is low such that repression by the
reaction product, glucose, does not play an important role. These
transitions can, in principle, change the balance of cooperative
and competitive interactions among microorganisms and affect
the fixed points of the systemqualitatively. Inspired by this system,
we represent these transitions in our model by constant nonzero
values of the transition rates, taken to be equal in both directions
for simplicity. Analyzing the dynamical system (2) with b1 =

b2 = b, we find that indeed it can support a single coexistence
fixed point of the dynamics, where both cell states have nonzero
concentrations (u∗, v∗, s∗) (seeAppendix C). However this requires
two conditions to be fulfilled:

d <
1 + R
4

(3)

b > B(R, d) (4)

(see the definition of B(R, d) in Appendix C). First, coexistence
requires that resource consumption is not too high relative to its
production. This condition comes about because the cells both
produce and consume the resource. In contrast, if the resource
were produced at a constant rate from the outside, the two
competing sub-populations with switching between them would
always maintain a stable coexistence state, even if consumption
rate is very high (Filiba et al., 0000).

Second, coexistence requires the transition rate between phe-
notypes to be above a threshold determined by the other system
parameters (R-selection coefficient, d-resource consumption). A
plot of the threshold value of b is shown in Fig. 1. The threshold be-
comes very large near the line defined by the condition in (3), rep-
resenting the limited region where coexistence can be achieved.
Fig. 1. Region of coexistence between producing and non-producing phenotypes
in a population of microorganisms required to actively extract a resource from
the environment. The shown manifold is a lower threshold on b, the transition
rate between phenotypes, required for coexistence. It is plotted as function of R,
selection coefficient, and d, resource consumption rate (see Eq. (2)).

Fig. 2. Total population density as a function of the ratio of phenotypes at the
coexistence fixed point. R = 3.5. Graphs are plotted for d = 0.3 (uppermost),
d = 0.4, d = 0.6, d = 0.8 (lowermost). At a coexistence fixed point, r∗ is never
greater than 1 or smaller than the lower cutoff defined by the threshold Eq. (4),
which depends on R and d. Notice that a higher value of the consumption rate d
leads to an overall lower total population density.

At all values where the coexistence fixed point is physical (i.e.
positive concentrations), it is stable. This can be proved using the
Routh–Hurwitz conditions (see Appendix C.2). In addition to the
coexistence state, the trivial fixed point extends to a continuum
on the s axis. These states are stable only for s < s∗ where s∗
is the value of the resource at the coexistence fixed point (see
Appendix C.1).

At the stable coexistence fixed point, the population is
characterized by the concentrations of the two phenotypes, u∗, v∗.
Alternatively, it can be characterized by the total population
density w∗

= u∗
+ v∗, and the degree of heterogeneity in the

population—for example the ratio between the two types, r∗
=

u∗/v∗. The ratio is in the region 0 < r < 1, with r = 1 the
maximally heterogeneous population where the two types appear
in equal fractions. The coexistence fixed point defines a relation
between these two variables:

w∗(r∗) =
1
d
r∗

+ R
r∗ + 1

−
r∗

+ 1
r∗

. (5)

Fig. 2 illustrates this relation for different parameter values.
It is seen that, for a fixed value of selection coefficient R, lower
rates of consumption d result in higher total population density.
For fixed (R, d), two different behaviors are seen regarding the
dependencew∗(r∗): either amonotonically increasing function, or
an intermediate maximal value. By direct calculation the maximal
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c d

Fig. 3. Numerical trajectories of the dynamical system in Eq. (2) with different parameters and initial conditions in the phase space of (u, v, s), viewed from different
angles (the cones indicate the initial conditions). The trajectories illustrate the decoupling of the phenotypic ratio dynamics from the total population dynamics in two
characteristic cases: (a,b) (same two trajectories from different angles, parameters b = 0.2, R = 1.1, d = 0.1, µ0 = 1.5, k = 1.5). The ratio between phenotypes, producing
and non-producing, is established rapidly and then a slower oscillatory relaxation occurs in the plane of fixed ratio, to the fixed point value of total population and resource.
(c,d) (same two trajectories from different angles, parameters b = 0.005, R = 1.001, d = 0.1, µ0 = 1.5, k = 1.5) Fast oscillatory relaxation determines the total population
and resource values, followed by a slower relaxation towards the fixed point value of the ratio.
value is obtained at

r∗

max =

√
d

√
R − 1 −

√
d
. (6)

When R > 4d+1, thismaximum is obtained at an intermediate
value of heterogeneity (0 < r∗

max < 1), with a population density
of

max(w∗) = w∗(r∗

max) =
R
d

− 2


R − 1

d
. (7)

On the other handwhen R < 4d+1, the above calculated value
becomes r∗

max > 1, which is outside the defined region of r∗. By
tuning the transition rates b, either to the maximal value which
gives the highest possible value of r (if R < 4d + 1) or to the
intermediate value giving amaximum ofw∗ (if R > 4d+1), a level
of heterogeneity at the coexistence fixed point can be obtained
which maximizes population density.

We next consider the dynamics of trajectories approaching the
fixed points. Numerical solutions of the equations indicate that
convergence to the fixed point is sometimes oscillatory. Observing
these oscillatory trajectories, it appears that the dynamics
of the ratio between the two phenotypes is approximately
independent of the dynamics of both the total population and
the resource concentration. Examples are displayed in Fig. 3,
showing trajectories in (u, v, s). The first pair of trajectories, with
black and gray lines corresponding to different initial conditions,
is shown in panels (a) and (b) from two points of view. These
two trajectories are rapidly attracted to a plane on which the
ratio between phenotypes is approximately constant, and then
continue to oscillate in this plane until the total population
and environment reach their fixed point values. On the other
hand, the second pair of trajectories in panels (c) and (d),
with different parameter values, features opposite dynamics:
first damped oscillations approximately inside a plane of the
initial ratio between phenotypes, and then a one dimensional
convergence to the fixed point ratio. These observations motivate
an approximation in which the dynamics of the ratio between
phenotypes is decoupled from the dynamics of the total population
and environment (which are strongly coupled to one another in
both cases).

Defining new variables of phenotypic ratio

r =

u
v


and the

total population (w = u + v), one may transform the equations
(2) to the following equivalent system:

ẇ = w


r + R
r + 1

µ(s) − 1


ṙ = −µ(s)(R − 1)r − b(r2 − 1) (8)

ṡ =
w

w + 1 + 1/r
− dµ(s)w.

The new equations have a simple interpretation. The total
population w grows with an average rate µmean =

r+R
r+1µ(s)

determined by its internal composition through the phenotypic
ratio r . The dynamics of the ratio r is driven by two forces: the
first is competition, tending to drive r toward zero. The second is
the transitions, driving the ratio towards an equilibrium positive
value (in this case of symmetric transition rates, this value is 1).
Asymptotically r will tend to some value r∗ between 0 and 1.
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(a) b = 0.1 R = 1.1. (b) b = 0.001 R = 1.001.

Fig. 4. Total microorganism population (w), ratio between producing and non-producing phenotypes (r) and resource in the environment (s) as functions of time in the
model for active resource extraction in the transformed variables, Eq. (8) (parameters: d = 0.1, µ0 = 1.5, k = 1).
The dynamics of r is independent of w, and depends on s only
through µ(s), which is of limited dynamical range; therefore r is
weakly coupled to the rest of the system, as our numerical analysis
suggested. The equation for s shows that it is very weakly coupled
to r , which only enters as an additive term in the denominator of
the substrate production function, but strongly coupled to w.

Fig. 4 illustrates this decoupling in numerical solutions of the
transformed equations with two sets of parameters. While the
limiting resource s and the total population w exhibit strong
coupled damped oscillations, the ratio r follows its own decaying
trajectory, either faster or slower than the other twovariables,with
negligible traces of the oscillations.

We can solve the transformed system of equations in a de-
coupling approximation and identify the corresponding timescales
(see Appendix D). In the leading order the typical time scale of ratio
dynamics is

τint = (4b2 + (R − 1)2µ(s)2)−
1
2 , (9)

where µ(s) is some characteristic value of the growth function.
This approximation can be justified in one of two cases: either
when s is changing very slowlywhile r is decaying rapidly, inwhich
case s̄will be close to its initial value; or when s changes so rapidly
that it had already decayed close to its fixed point value, in which
case s̄will be that equilibrium value. τint is the Internal Composition
relaxation time, the time it takes the system to reach a stable
internal ratio between the two phenotypes, assuming decoupling.
Now, keeping the decoupling assumption, if the changes in r are
also not too great since it had already equilibrated or is changing
very slowly, we can solve the reduced system:

ẇ = w


r + R
r + 1

µ(s) − 1


ṡ =
w

w + 1 + 1/r
− dµ(s)w. (10)

This reduces the problem back to a homogeneous population
extracting the resource, Eq. (A.3), but with nonlinear functions
- growth and extraction - depending parametrically on r . The
relaxation dynamics depends on the differences in slope between
the production and consumption functions at the fixed point
population value (see Appendix A). Except for the limiting
case where these two slopes are very close to each other, the
corresponding relaxation timescale towards the fixed point is
found to be

τenv = (dµ′(s∗)w∗)−1. (11)

This is the Environment relaxation time, describing the process
of equilibration between the total population and the environ-
ment. It is the same timescale found for a single population equili-
brating with a growth-limiting resource in the environment and
reaching its fixed point value regardless of the dynamics of this
resource.
a

b

c

Fig. 5. Numerical solution (solid gray) and decoupling approximation (dashed
black) for the model in transformed variables of total population and phenotype
ratio, Eq. (8) (parameters: b = 0.1, R = 1.1, d = 0.15, µ0 = 2, k = 3).

This decoupling approximation is valid under conditions of
timescale separation (see Appendix D). In practice we find
numerically that sometimes it provides a good approximation
to the dynamics even beyond the this strict validity regime.
Fig. 5 illustrates the quality of the leading order solutions in the
decoupling approximation. It displays the exact numeric solution
of the full system (solid lines) along with the approximate analytic
expression for r and an exponential approximation for w and s
based on the calculated eigenvalues (dashed lines). Here there is
a shorter timescale for the ratio dynamics (20 time units) than the
timescale of the other variables (80 time units).

3.2. Negative feedback through the environment:modeling repression
by the product

In several cases of active resource extraction, the phenotypic
state is sensitive to the reaction product in the environment.
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(a) d = 0.65. (b) d = 1.2.

Fig. 6. Stable states of the dynamics in a model with single-sided transitions b1 = 0, b2 = b, (in the region s < s0) where transitions take place from the non-producing to
the producing phenotype. Light gray: stable exclusion. Dark gray: stable coexistence. Checkered area: stable limit cycle. White area: no physical fixed points. Two values of
d are shown. In both, µ′(s∗) = 1.
Yeast production of invertase is repressed by glucose (Gancedo,
1998), which is a product of extracellular hydrolysis of sucrose
by invertase; another example is bacterial production of the
iron-scavenging molecule pyoverdin, which is repressed by the
extracted iron (Kummerli et al., 2009). We model this effect by
introducing a resource-dependent bias in the transition rates, b(s).
A simple such dependence is given by a step function as follows:

b1(s) =


0, s < s0

b, s > s0

b2(s) =


b, s < s0

0, s > s0
(12)

where s0 is the threshold resource concentration where the direc-
tion of transitions changes. Above this resource level transitions
are solely to the non-producing state, and therefore after a tran-
sient all cells will be repressed; below the threshold there are tran-
sitions only to the producing state and thus the opposite situation
will occur. Although this is a simplified description, it introduces
the essential effect of a negative feedback from gene expression
to the environment and back. More realistic smooth dependencies
on the product level will be discussed below and will be shown to
exhibit qualitatively similar behavior.

The Heaviside threshold in (12) allows an approximate analysis
of the problem. Technically it defines two problems with one-way
transitions (either b1 = 0 or b2 = 0) above and below a threshold
value s0; the sharp threshold allowsus to analyze each of these sub-
problems with fixed transition rates separately. This analysis will
hold for trajectories that stay entirely on one side of the threshold.
We then discuss how these two regions are matched to obtain the
behavior of trajectories that wander between the two regions.

Consider first the case where the resource level is above the
threshold — s > s0, b1(s) = b and b2(s) = 0. Since transitions are
only to the non-producing state, the fixed points are trivial ones
located on the s axis. The axis is stable for s < sv = µ−1

 1
R


, and

from that point onward, it is unstable. Therefore typical trajectories
will be curved, repelling from the upper portion of the axis and
converging to an attractive fixed point on the lower part (see
Appendix E.1). If s0 > sv there will be no stable fixed points above
the threshold and trajectories will always eventually cross to the
lower region of s < s0, where transitions are only to producing
cells.

The opposite case where the resource level is below the
threshold — s < s0, b1(s) = 0 and b2(s) = b, now enables a
balance of transitions and competition effects between the two
phenotypes. We used numerical sampling and analytical analysis
to characterize the solutions in the entire parameter space (see
Appendix E.2). The trivial points on the s axis are stable up
to su = min


µ−1(1), µ−1

 1+b
R


. (Note that su > sv). In

addition, three types of nontrivial fixed points are found: first, an
exclusion fixed point, where the resource-extracting cells form a
homogeneous population. Second, a fixed point with two viable
sub-populations of nonzero density u∗, v∗. When this coexistence
point is unstable, one sometimes find a stable limit cycle around it,
in which the population composition cycles along time. For each
set of parameters there is at most one stable state. Typical results
on the b − R plane for two values of d are displayed in Fig. 6, with
different shading corresponding to different types of stable states
— exclusion point, coexistence point and limit cycle. Whatever the
stable state, if s∗ is the resource value of the steady state (in the
case of the limit cycles, of the unsteady coexistence point) then
su = s∗ — the axis is stable up to the point with the same resource
concentration as the steady state.

We distinguish two regions as a function of d. For d <
1 (left panel), substrate consumption is not too rapid so that
the producing phenotype can support a separate homogeneous
population (the exclusion point). This corresponds to the light gray
area R < b + 1, namely a selection coefficient (R) not too large
relative to transitions (b). In this region the coexistence point is
both unphysical and unstable. Crossing the line R = b + 1, one
goes through a transcritical bifurcation where the two fixed points
merge and exchange stability properties; in the dark gray the stable
state is the coexistence fixed point. In the checkered region, the
coexistence fixed point loses its stability and a stable limit cycle
appears through a Hopf bifurcation.

For d > 1 (right panel), only coexistence states are possible,
since producing cells are consuming the resource too fast to
support a separate population. Once again dark gray represents the
region of stable coexistence fixed points which lose the stability
in the checkered region, where a stable limit cycle appears. In
both sub-plots, the limit cycle (checkered) region implies sustained
oscillation between producers and non-producers as a function
of time. With all other parameters held fixed, this region fills
more of the coexistence region as the value of µ′(s∗) decreases,
but the overall coexistence area in parameter space (dark gray +
checkered) does not change (see Appendix E.2).

Now we combine what we have learned about the two cases
separately to understand the qualitative nature of the dynamics
under environment-mediated feedback. With the Heaviside func-
tion model (12), the plane s = s0 divides phase space into two
regions, in each of which there are only one-sided transitions.
Therefore locally the dynamics reduce to one of the two systems
described above. Now the behavior of the system depends on the
threshold level.
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Fig. 7. Projection on the (v, s) plane of numerical trajectories of Eq. (2) with repression by the extracted substrate for different values of the threshold s0 . b1(s) and b2(s)
are smoothed threshold functions (see text). The nature of the trajectories depend on the location of s0 relative to the one-way transitions characteristic su and sv (see text).
When the threshold is far from the fixed point, panel (a), the trajectories are attracted to the non-trivial fixed point in the lower region. As the threshold value is lowered
toward su , limit cycles appear on the threshold. At an even lower threshold the cycles decrease in size around the threshold. When the threshold decrease to around sv or
smaller, the trajectories are attracted by the s axis. (Parameters—b = 0.7, R = 2, d = 0.4, µ0 = 1.5, k = 1, λ = 400).
In Fig. 7 a projection of the numerically calculated trajectories
on the (s, v) plane is plotted, for a soft sigmoid threshold: b1(s) =

(1 − e−λs)−1, b2(s) = 1 − b1(s), where λ is the smoothness
parameter. Using a softer threshold, for the purpose of numerical
integration, makes the trajectories smoother and moves the fixed
point slightly but does not change our analysis of the attractors.

For a trajectory that is entirely in the lower part of phase space,
s < s0, the dynamics will just converge to one of the three possible
attractors we discussed. The fate of trajectories that start or cross
over to the other region s > s0 depends on the relation between the
model threshold s0 and the thresholds that emerge in the stability
analysis. If s0 ≫ su then above the threshold there are no stable
states and trajectorieswill be attracted by the stable part of the axis
below sv , which is below s0. Thus it will always eventually cross the
threshold s0 to lower values of s and converge to the appropriate
lower part steady state. Note that for some initial conditions (small
population sizes) the trajectory might encounter a stable part of
the s axis below su and stay on this trivial fixed point (see Fig. 7(a)).

If the threshold s0 is close to su, but still above sv as in Fig. 7(b),
a trajectory approaching the coexistence point, for instance, may
cross the plane upward and then no longer feel the attraction of
the fixed point. It then moves in the upper region towards the
stable portion of the s axis, which is still below the threshold and
therefore cross it once more. Then the trajectory will get caught
by the spiral of the coexistence point again, which may once again
take it around andmake it cross the plane. This may create a stable
limit cycle, especially if s0 < su (as in Fig. 7(c)) and the lower region
fixed point becomes unattainable so the trajectory can either settle
on a limit cycle or end up on a trivial fixed point on the s axis.
As the threshold is further lowered, the cycle becomes smaller
and closer to the plane. Finally, when the threshold is lowered
below even sv as in Fig. 7(d), there are trivial fixed points also in the
region above the threshold and the trajectories will be attracted
there instead of producing the limit cycles (again, depending on
initial conditions).

4. Discussion

Microorganisms address the need for actively extracting
resources from their surrounding by expressing and secreting
extracellular proteins which can react with the environment to
produce the required resources. Because this action entails a cost in
fitness, and because its products are available in the environment
for neighboring cells, it can be considered a special case of the
more abstract problem of cooperation. However, in contrast to
the abstract setting of the problem, microorganism populations
provide us the opportunity to investigate biological details of the
processes that underlie this cooperative interaction.

In this work we have used nonlinear dynamical systems
to describe how properties of protein expression in the single
cell are reflected in the population dynamics with interactions
mediated by the proteins. In particular we described two such
intracellular effects. First, a randomphenotypic switching between
protein producing and non-producing states, such as that induced
by epigenetic processes (Telomere Position Effect). Second, a
regulatory process—the repression of protein expression by the
produced resource, such as that seen in exoenzyme hydrolyzing
complex sugars which are repressed by the resulting glucose,
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or in siderophore repression by iron (Gancedo, 1998; Kummerli
et al., 2009). Producing and non-producing cells interact indirectly
through their common resource, in a two-way interaction: the
resource both limits growth, and is being produced by one of the
sub-population.

If switching rates vanish and each phenotype is completely
stable, our problem is reduced to that of two competing species;
in this case, in a mixed environment non-producers will always
take over the population and when the resource is essential
extinction will follow. When switching is driven by random
epigenetic transitions, we have found a finite nonzero threshold of
switching rates above which the two phenotypes can coexist in an
asymptotically stable fixed point. The finding of such a threshold,
regardless of the exact values of system parameters where it is
found, is a qualitative prediction of the model. Genetic technology
in yeast allows one to engineer strainswith varying transition rates
depending on the position of the genewith respect to the telomere
(Louis, 1995), and thus to test this prediction experimentally.

The heterogeneous coexistence state can contribute to the fit-
ness of a population facing the task of active resource extraction. If
all cells were to produce an exoenzyme, the metabolic cost would
be large; if none would produce it, the cost in terms of growth rate
would be large; a static partitioning of the population into twophe-
notypes cannot be stable, since the non-producing cells would take
over. Hence the solution of dynamic heterogeneity is a compromise
between these constraints at the population level. More quantita-
tively, we have shown that under some conditions, there is a value
of the switching rate that maximizes the population density when
other system parameters are fixed. Given the variable nature of the
SUC gene family expressing invertase in yeast, one can imagine a
degree of freedom that is not necessarily genetic but relies on ac-
tivation and silencing of different SUC genes, to tune this transi-
tion rate as required. A population which ‘‘divides labor’’ among
producers and non-producers can have an advantage when com-
peting with other populations in the same habitat. While this pro-
posed role of population heterogeneity in active resource extrac-
tion is speculative, it adds to the recently accumulating evidence
that such heterogeneity is advantageous at the population level
under challenging conditions such as nutrient limitation at station-
ary phase (Veening et al., 2008a,b) or temporally varying environ-
ments (Donaldson-Matasci et al., 2008).

Our dynamic analysis enabled us to show that in some switch-
ing regimes (when the two-way transitions are approximately
symmetric), the population undergoes a relaxation of its internal
structure while a separate and weakly coupled external process is
responsible for equilibrating the total population with its environ-
ment. This separation into two weakly coupled processes provides
a simplified description of the dynamics and allows one to lower
the effective dimensionality of the problem. Further investigation
is required in order to characterize the generality of this decoupling
in other models of populations with indirect interactions through
the environment.

Under conditions of high cell density, repression by the
product becomes a dominant dynamic effect. It causes an effective
negative feedback on gene expression from the environment
through the expression product itself. We have shown that in
the presence of such repression coexistence can come about by
limit-cycle dynamics, namely a stable state in which not only the
individual phenotype but also the population composition cycles
between different values over time. Limit-cycle dynamics between
cooperators and defectors was found in Hauert et al. (2008), where
an abstract public-good gameswas analyzed inwhich the effective
group size for interaction induces the negative feedback; in our
case it is induced by the molecular biology of gene expression
mechanisms. The limit-cycle dynamics we found is analogous to
predator–prey systems, however here the same population both
consumes and produces the substrate needed for growth.
The modeling approach used here can be extended in several
directions. First, finite-population effects can be taken into
account by considering the discrete nature of cells instead
of continuous population densities. In particular, extinction
probabilities and other rare events that arise from this finiteness
are neglected in our model. Second, the spatial structure of
populations can be taken into account; the assumption of a well-
mixed environment, rendering the interaction among individuals
completely homogeneous, is inadequate for many biological
situations. Finally, the continuous variability of gene expression
in the population can be modeled, extending the binary picture
of producing/non-producing cells suggested here. It is expected
that the broad range of gene expression levels generally found
in isogenic microorganism populations will have an important
effect on the dynamics of the population when actively extracting
resource (Avery, 2006; Brenner et al., 2006).

Appendix A. Active extraction of a growth-limiting source

A single phenotype which actively extracts its own growth-
limiting resource fromawell-mixed environment can be described
by the following equations

˙̃u = ũ(µ̃(s̃) − D) (A.1)

˙̃s = g̃(ũ) −
1
Y

µ̃(s̃)ũ, (A.2)

where ũ is the population density, s̃ the growth-limiting resource,
D the death (orwashout) rate and Y the yield coefficient— the ratio
of growth to amount of substrate consumed. It is characterized
by two nonlinear functions, µ̃(s̃) — the growth as a function of
resource, and g̃(ũ) — the resource production as a function of cell
concentration. The first is assumed monotonically increasing and
saturating, such as the Monod growth function, a typical growth-
rate dependence of microorganisms on a limiting resource. The
second function is assumed similarly sub-linear and increasing
in the concentration of cells. This describes a resource-producing
reaction which is limited by the concentration of the external
substrate. It is assumed that the concentration of exoenzyme is
proportional to the concentration of producing cells ũ.

Transforming these equations to dimensionless units the death
rate is equal to one (t = D · t̃) and the maximal extraction rate
is one (limu→∞ g(u) = 1). Dimensionless parameters are the
maximum of the rescaled dimensionless growth function µ0, the
dimensionless inverse yield d = Y−1, and additional parameters
of the nonlinear functions µ(s), g(u) — such as the value of their
argument at half maximum for the case of Monod functions. The
qualitative behavior of the system is insensitive to the exact forms
of both nonlinear functions and depend on their gross features:
monotonicity and sublinearity. The final dimensionless equations
are presented in the main text (Eq. (1)) and the detailed more
general transformation is shown explicitly in the next Appendix.

The above dynamical system exhibits bifurcations as a function
of the parameters µ0 and d, allowing a nontrivial fixed point if
death is not too rapid relative to maximal growth (µ0 > 1) and
if resource consumption is not too rapid relative to its production
at low cell concentration (d < g ′(0) = 1). Under these conditions
the fixed point obeys

µ(s∗) = 1 (A.3)
u∗

= g(u∗)/d
with eigenvalues of the Jacobian at the fixed point

λ± =
1
2
(−dµ′(s∗)u∗

±


(dµ′(s∗)u∗)2 + 4µ′(s∗)u∗(g ′(u∗) − d)) (A.4)

both with negative real parts, rendering the fixed point stable
for any monotonic growth function µ(s). The discriminant can be
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Fig. A.8. Nonlinear functions of themodel for active extraction of a growth-limiting
resource. The solid curve is the resource production function g(u), while the dashed
line is the consumption function at the fixed point. Those two curves cross at the
fixed point according to (A.3), and the slope of the line will always be greater than
that of the tangent to the curve at u∗ .

written as follows:

∆ = dµ′(s∗)u∗

[
dµ′(s∗)u∗

− 4

1 −

g ′(u∗)

d

]
. (A.5)

While the first term in the brackets is always positive, the sec-
ond is negative for any resource production function which is a
rising concave function that tends to saturation. This term, repre-
senting the difference between the slopes at the fixed point of the
production function g and the consumption function dµ(s∗)u∗

=

du∗, is clearly negative by (A.3) and the concaveness of g(u) (see
Fig. A.8). If 1

d (d−g ′(u∗)) > 1
4dµ

′(s∗)u∗ the discriminant is negative
and there are two complex conjugate eigenvalues with a real part
−

1
2dµ

′(s∗)u∗. Trajectories are then spirally converging with an ex-
ponent of the order of dµ′(s∗)u∗. If 1

d (d − g ′(u∗)) < 1
4dµ

′(s∗)u∗

the discriminant is positive and there are two different real eigen-
values with 0 > λ2 > −

1
2dµ

′(s∗)u∗ > λ1 > −dµ′(s∗)u∗, and
trajectories are exponentially decaying. We conclude that in most
cases the timescale of Eq. (1) will be close to dµ′(s∗)u∗. Only when
g ′(u∗) is very close to d, will the decay be faster than dµ′(s∗)u∗.

We note that since this timescale approximation is based only
a local calculation near the fixed point, domain boundary effects
can modulate it. Specifically, when the trajectory approaches the
s axis for small values of u there is a critical slowing down of the
dynamics.

Appendix B. Simplified model equations for resource extrac-
tion by two phenotypes

Here we specify the assumptions underlying our model
equations for two phenotypes, one which produces the resource
by active extraction and one which does not. The equations are
generally:

˙̃u = (µ̃u(s̃) − D̃u)ũ − b̃1ũ + b̃2ṽ
˙̃v = (µ̃v(s̃) − D̃v)ṽ + b̃1ũ − b̃2ṽ
˙̃s = c̃

ũ
ũ + z̃

−
1

Ỹu
µ̃u(s̃)ũ −

1

Ỹv

µ̃v(s̃)ṽ
(B.1)

where ũ, ṽ are concentrations of the producing and non-producing
phenotype populations respectively, s̃ is the limiting resource
concentration, µ̃i(s) the specific growth rates, D̃ the removal rate
due to death or washout, b̃i the transition rates between the
phenotypes (which can generally be dependent on s̃), c̃ and z̃
constants of the resource production function and d̃i = Ỹ−1

u the
inverse of the yield for the two phenotypes.

In the mathematical analysis of the model no specific form for
the growth function µ̃(s̃) was assumed; it was required only that
it is monotonically increasing and vanishing for s̃ = 0. This last
assumption is based on the extreme situation where the only
source of growth for the cells is the resource produced by the cells.
This can be unrealistic in many situations, including the invertase
case since the cells have a limited ability to absorb sucrose di-
rectly and express also a form of intracellular invertase. Relaxing
the mathematical assumption µ̃(0) = 0 leads to complications in
themodel analysis and does not allowmany of the approximations
presented in the text. However, we solved the equations numer-
ically with a constant baseline production term for both pheno-
types, and observed that the qualitative results presented in the
main text, such as the threshold on the transition rates, the decou-
pling of internal and external dynamics, and the limit cycle for the
repression regime—all remain as empirically observed phenom-
ena. Wherever numerical integration was performed for visualiza-
tion, aMonod growth function of the form µ̃(s) = µ̃0

s̃
k̃+s̃

was used.
We assumed that the different phenotypes display the same

form of the growth function, only scaled by a selection coefficient
R: µ̃v(s̃) = Rµ̃u(s̃) = Rµ̃(s̃), where R > 1 representing the
metabolic cost of the exoenzyme production. We further assume
that while the different phenotypes have different growth rates
and different yields, their substrate consumption rate is identical,
and define a new global consumption rate parameter d̃ := d̃u = d̃u.
Finally,we assume that removal occurs at the same rate, D̃ := D̃u =

D̃v . Now we can rescale time accordingly so the removal rates are
1. By rescaling ũ and s̃ we can set both c̃ and z̃ to be also 1. We
shall also rescale ṽ similarly to ũ so the first two equations remain
symmetric. By redefining all the other dimensionless constants, we
arrive at the a simplified and dimensionless form for the equations,
Eq. (2) in themain text. The overall transformations of all variables
and parameters to dimensionless quantities are:

t = D̃ · t̃ b =
1

D̃
· b̃

u =
1
z̃

· ũ d =
D̃z̃
c̃

· d̃

v =
1
z̃

· ṽ µ(s) =
1

D̃
· µ̃(s̃) =

µ0s
s + k

s =
D̃
c̃

· s̃ µ0 =
1

D̃
· µ̃0

k =
D̃
c̃
k̃.

In the main text and in the following only the dimensionless
quantities appear.

Appendix C. Fixed points and stability for random switching

The fixed points of the dynamical system with constant b’s are
found by the equations:

(µ(s∗) − 1)u∗
+ bv∗

− bu∗
= 0 (C.1)

(Rµ(s∗) − 1)v∗
− bv∗

+ bu∗
= 0 (C.2)

u∗

u∗ + 1
− d(u∗

+ v∗)µ(s∗) = 0. (C.3)

These equations have the trivial solution, u∗
= v∗

= 0, for any
value of s; this means that the entire s axis is a continuum of fixed
points (see below). We now wish to find the nontrivial states. By
summing Eqs. (C.1) and (C.2)

u∗

v∗
= −

Rµ(s∗) − 1
µ(s∗) − 1

. (C.4)

In order for this ratio to be positive, R−1 < µ(s∗) < 1. By
substituting (C.4) into (C.2) we get a quadratic equation for µ(s∗)
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.8)

.9)
d <
1 + R
4

. (C

b > B(R, d) :=
R2

+ 4d2(R − 1) − d(R(R + 3) − 2) + (d + (d − 1)R)

R2 − 4d(R − 1)

2d(R − 1)(1 − 4d + R)
. (C

Box I.
with one valid solution:1

µ(s∗) =
(1 + R)(1 + b) −


(1 + R)2(1 + b)2 − 4R(1 + 2b)

2R
.

(C.5)
The ratio Eq. (C.4) is independent of the dynamics of the

environment (Eq. (C.3)). Using (C.4) and (C.3), we find for each sub-
population:

u∗
=

Rµ(s∗) − 1 − d(R − 1)µ(s∗)2

d(R − 1)µ(s∗)2
(C.6)

v∗
=

1 − µ(s∗)
Rµ(s∗) − 1

Rµ(s∗) − 1 − d(R − 1)µ(s∗)2

d(R − 1)µ(s∗)2
. (C.7)

The condition for coexistence (demanding nonzero u∗ from
(C.6)) can be formulated as two inequalities, as explained
qualitatively in the text: Eqs. (C.8) and (C.9) are given in Box I.

C.1. Stability of the trivial solution

The stability of the trivial solution on the s axis is determined
by the Jacobian on the axis:

J =


µ(s) − 1 − b b 0

b Rµ(s) − 1 − b 0
1 − dµ(s) −dµ(s) 0


. (C.10)

With eigenvalues

λ± = −1 − b +
1 + R
2

µ(s) ±


b2 +


1 − R
2

2

µ2(s) (C.11)

λ0 = 0. (C.12)
One of the eigenvalues (λ0) is always zero, with a corresponding

eigenvector tangent to the s axis. By the Center Manifold Theorem
(Guckenheimer and Holmes, 1990), each point on the axis has a
one dimensional center manifold, the s-axis itself. Since the flow
is constant along the axis, the solution on the center manifold is
stable (although not asymptotically stable). To prove stability it is
therefore enough to prove that there is no unstable manifold, or
that the sign of the other two eigenvalues is negative.

At s = 0 both other eigenvalues (λ+, λ−) are negative, so it is
always stable. At positive values of s, since λ+ > λ− it is enough to
require λ+ < 0 to ensure stability. Since µ(s) in monotonic, λ+(s)
is also an increasing function of s, and the axis is stable from the
origin up to the point where λ+(s) = 0. Solving this condition for
µ(s)we arrive at (C.5), our previous expression for s∗—the value of
the coexistence point s component; therefore the s axis is stable
only for s < s∗. For larger s, the s-axis becomes unstable and
trajectories move away from it towards the coexistence point (if it
exists) or towards a lower, stable point on the axis itself, below s∗.

C.2. Stability of the coexistence solution

In this section we prove the stability of the coexistence solution
by using the Routh–Hurwitz conditions to show that all the

1 The other solution will result in a negative steady state ratio between the two
sub-populations.
eigenvalues have negative real parts. For a three dimensional
system, these conditions are:

a0a1 > 0 (C.13)
a1a2 − a0a3 > 0 (C.14)

where ai’s are coefficients of the characteristic polynomial: a0λ3
+

a1λ2
+ a2λ + a3 = 0.

Since at the coexistence fixed point the following relations hold

µ(s∗)(u∗
+ Rv∗) = u∗

+ v∗ (C.15)

−b
v∗

u∗
= µ(s∗) − 1 − b (C.16)

−b
u∗

v∗
= Rµ(s∗) − 1 − b. (C.17)

The Jacobian there takes the form (dropping the asterisk from
now on):

J =


−b

v

u
b µ′(s)u

b −b
u
v

Rµ′(s)v
1

(1 + u)2
− dµ(s) −dµ(s) −d(u + v)µ′(s)

 . (C.18)

Then, the coefficients of the characteristic polynomial for the
coexistence point are:

a0 = −1 < 0

a1 = trJ = −b
u

v
+

v

u


− d(u + v)µ′ < 0

a2 = −bdµ′(u + v)
u

v
+

v

u


− dµµ′(Rv + u) + µ′

u
(1 + u)2

a3 = −bdµµ′


u + R

v

u
v + Rv +

u
v
u


+ bµ′


Rv +

u
v
u
 1

(1 + u)2
.

The first Routh–Hurwitz condition (C.13) is clearly valid. As for
the second one, using (C.3):

a1a2 − a0a3
dµ′

= dµ′(u + v)2

b
u

v
+

v

u


+ 1 − dµ2


1 +

v

u


+ bv


b
u

v
+ 1

 u
v

+
v

u

2
+ dµ2(R − 1)

×


1 +

v

u

2
+ µ

u
v

− 1


(R − 1)


. (C.19)

Since the factors preceding the brackets are all positive, for the
second condition (C.14) to be valid it is enough to prove that each
of the expressions in the brackets is positive. For the first bracket
one can write the following bound:

b
u

v
+

v

u


+ 1 − dµ2


1 +

v

u


> b

v

u
+ 1 − dµ2


1 +

v

u


= 2 − µ + b − µ

dµ2(R − 1)
Rµ − 1
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where we used the fixed point conditions (C.16) and (C.17). Using
the positivity of the steady state value of u (C.6):

2 − µ + b − µ
dµ2(R − 1)
Rµ − 1

> 2 − µ + b − µ · 1

= 2(1 − µ) + b.

Since the value of the growth function at the fixed point is
always smaller than 1, this last expression is indeed positive. For
the second bracket in Eq. (C.19):

b
u

v
+ 1

 u
v

+
v

u

2
+ dµ2(R − 1)


1 +

v

u

2
+ µ

u
v

− 1


(R − 1)

> b
u

v
+ 1

 v

u

2
+ µ(−1)(R − 1)

= µ
R − 1
Rµ − 1

[2 + b − µ(1 + R)],

where we have used (C.4), (C.16) and (C.17) again. In the last
expression everything outside of the brackets is positive. The
expression inside the brackets can be shown to be positive
using the value of the growth function at steady state (C.5) and
elementary algebra.

Appendix D. Decoupling approximation

As stated in the main text, the decoupling phenomenon
appears for different parameter values. It can be developed as
a controlled approximation using singular perturbation theory
(O’Malley, 1974) in the limit of very large b, or small ϵ = 1/b ≪ 1.
Then the equations are

ẇ = w


r + R
r + 1

µ(s) − 1


ϵ ṙ = −ϵµ(s)(R − 1)r − (r2 − 1) (D.1)

ṡ =
w

w + 1 + 1/r
− dµ(s)w.

The solution can be expanded in powers of ϵ as long aswe allow
different behaviors in a boundary layer about the size of ϵ. Defining
a fast time scale τ = t/ϵ, the first order expansion will be:

w(t, τ , ϵ) = wt
0(t) + ϵwt

1(t) + ϵwτ
1 (τ ) + · · ·

s(t, τ , ϵ) = st0(t) + ϵst1(t) + ϵsτ1(τ ) + · · ·

r(t, τ , ϵ) = r t0(t) + rτ
0 (τ ) + ϵr t1(t) + ϵrτ

1 (τ ) + · · · .

Notice that the fast part of the solution for r is the only one
which has a zero order term since the equation for ṙ depends on
ϵ explicitly. The fast part of the solution (that depends on τ ) must
tend to zero as τ tends to infinity, and the slow part (that depends
only on t) must solve the equations by itself, albeit with a different
initial condition. The slow solution can be obtained iteratively by
algebraically finding the value of the current order of r(t) and then
solving two differential equations for w(t) and s(t). In the first
iteration (terms of ϵ0):

0 = −((r t0(t))
2
− 1)

r t0(t) = 1

w0(t) and s0(t) can then be found from:

ẇt
0 = wt

0


1 + R
2

µ(st0) − 1


ṡt0 =
wt

0

wt
0 + 2

− dµ(st0)w
t
0.
The dynamics of the total population and the substrate determine
the slow time scale.

Now, by using the form of the slow solution, we can find new
equations for the fast solution. Again taking zero order (ϵ0) in r:

∂τ rτ
0 (τ ) = −((rτ

0 (τ ) + r t0(t))
2
− 1)

∂τ rτ
0 (τ ) = −(r t0(t))

2
− 2rτ

0 (τ )r t0(t) − (rτ
0 (τ ))2 + 1.

Using the slow solution r t0(t) = 1:

∂τ rτ
0 (τ ) = −2rτ

0 (τ ) − (rτ
0 (τ ))2.

Solving:

rτ
0 (τ ) =

2A
e2τ − A

.

With A determined by the initial conditions. The full solution in
this order is

r0(t) = r t0(t) + rτ
0 (bt) =

e2bt + A
e2bt − A

= tanh(bt + C). (D.2)

Only in the next order will corrections to s and w appear.
It will be shown now that assuming decoupling in the general

case, the ratio behaves as a hyperbolic tangent. This is not a
controlled approximation but shows the generality of the above
result. The equation for the ratio r when µ(s) is assumed constant
is

ṙ = −ar − b(r2 − 1)

with a = µ(s)(R − 1).
Integrating by separation of variables:∫
dt =

∫
dr

−ar − b(r2 − 1)
.

Integrating, the RHS integral depends on the values of r in the
integration:

t + C =



2
√
a2 + 4b2

atanh


a + 2br
√
a2 + 4b2


a + 2br <

√
a2 + 4b2

2
√
a2 + 4b2

acoth


a + 2br
√
a2 + 4b2


a + 2br >

√
a2 + 4b2.

Denoting either tanh or coth by T we can solve for r(t):

r(t) = −
a
2b

+

√
a2 + 4b2

2b
T

√
a2 + 4b2

2
(t + C)


.

With C and T determined by initial conditions. Returning to the
original parameters and writing the cases explicitly:

r(t) = −
µ(s)(R − 1)

2b
+


(µ(s)(R − 1))2 + 4b2

2b

tanh


(µ(s)(R − 1))2 + 4b2

2
(t + C)


.

If

r(0) < −
µ(s)(R − 1)

2b
+


(µ(s)(R − 1))2 + 4b2

2b
.

Or

r(t) = −
µ(s)(R − 1)

2b
+


(µ(s)(R − 1))2 + 4b2

2b

coth


(µ(s)(R − 1))2 + 4b2

2
(t + C)


.
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If

r(0) > −
µ(s)(R − 1)

2b
+


(µ(s)(R − 1))2 + 4b2

2b
.

The solution always stays on the same side of the line r∗
≡

r(∞) = −
µ(s)(R−1)

2b +

√
(µ(s)(R−1))2+4b2

2b . From the form of the
solution it is evident that the characteristic timescale is of the order
(4b2 + (R−1)2µ(s)2)−

1
2 , as was presented in (9). The perturbation

theory approximation (D.2) is a specific well-controlled case of this
general solution.

Appendix E. Analysis of the single-sided transition models

In this Appendixwe analyze the two one-sided transitions cases
that make up the model Eq. (2) with the transition rates defined
by Eq. (12). We detail the steady states and dynamics of each
one-sided problem that were combined in the main text in the
treatment of this model.

E.1. Transitions to non-producing state

Since the resource is essential for growth, only trivial fixed
points are found in this case, with arbitrary values of s. The stability
of points on the s-axis depends on the value of s and is determined
by the Jacobian:

J =


µ(s) − 1 − b 0 0

b Rµ(s) − 1 0
−dµ(s) −dµ(s) 0


. (E.1)

With the eigenvalues:

λ1 = µ(s) − 1 − b
λ2 = Rµ(s) − 1 (E.2)
λ3 = 0.

It is seen that Rµ(s) < 1 is a sufficient condition for stability
and so sv = µ−1(1/R) is the point where the axis loses stabil-
ity. Generally, trajectories will curve around, repelled from the un-
stable part of the axis and attracted to the stable part. Numerical
solutions verify this for various parameter values (see Fig. E.9). In
all cases, eventually, the population will consist almost entirely of
non-producing cells and v and s will decrease monotonically until
there are no more cells.

E.2. Transitions to producing state

In this case also, there are trivial fixed points on the axis up to a
certain s value. Again examining the Jacobian on the axis:

J =


µ(s) − 1 b 0

0 Rµ(s) − 1 − b 0
−dµ(s) −dµ(s) 0


. (E.3)

We now have eigenvalues:

λ1 = µ(s) − 1
λ2 = Rµ(s) − 1 − b (E.4)
λ3 = 0.

So that the axis is stable up to su = min

µ−1(1), µ−1

 1+b
R


.

Notice that since µ(s) is increasing, su > sv .
Unlike the previous case, however, now there are always

producing cells that allow for nontrivial states with nonzero
population. One finds two types of nontrivial fixed points: first, an
exclusion state

u∗
=

1
d

− 1
v∗

= 0
µ(s∗) = 1

(E.5)
Fig. E.9. Projection on the (v, s) plane of numerical trajectories of the model in Eq.
(2) with one-way transitions to the non-producing state for several different initial
conditions. The extreme value in which the s-axis is stable is marked with sv . The
trajectories can be seen repelled from the part of the s-axis above sv , and attracted
to a point below it. (b1 = 0, b2 = 1.75, R = 3, d = 0.3, µ0 = 1.8, K = 3).

which requires d < 1, namely not too rapid a consumption.
Second, a coexistence,

u∗
=

bR2
− d(R − 1)(b + 1)2

d(R − 1)(b + 1)2

v∗
=

R − b − 1
Rb

·
bR2

− d(R − 1)(b + 1)2

d(R − 1)(b + 1)2

µ(s∗) =
b + 1
R

.

(E.6)

Taking on physical meaning (positive concentrations) when the
following conditions are fulfilled:d <

bR2

(R − 1)(b + 1)2
R > b + 1.

(E.7)

The stability of the exclusion fixed point (v∗
= 0) is determined

by the following Jacobian

J =

 µ(s∗) − 1 b µ′(s∗)u∗

0 Rµ(s∗) − 1 − b 0
1

(1 + u∗)2
− dµ(s∗) −dµ(s∗) −dµ′(s∗)u∗

 .

(E.8)

And the eigenvalues are

λ1,2 =
1
2
(d − 1)


µ′(s∗)(


µ′(s∗) ±


4 − µ′(s∗)) (E.9)

λ3 = R − b − 1. (E.10)

The first twoeigenvalues always have anegative real part (recall
this state exists only for d < 1). The third eigenvalue is negative
when R < b + 1, namely in the region where it is the only
fixed point (since the coexistence point is unphysical by the second
condition in (E.7)). The appearance of the coexistence fixed point
at physical concentration values renders the exclusion fixed point
unstable. Thus one concludes that for d < 1 and R < b + 1 the
exclusion point is the only nontrivial stable fixed point.

The conditions in Eq. (E.7) and numerical calculation of
the eigenvalues allow us to plot the stability regions for the
coexistence fixed point. Typical results for the stability regions
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(a) Initial conditions outside the limit cycle. (b) Initial condition within the limit cycle.

Fig. E.10. Numerical trajectories of the model in Eq. (2) with one-way transitions to the producing state, demonstrating the possibility of stable limit cycles. (b1 = 0, b2 =

1.75, R = 3, d = 0.3, µ0 = 1.8, K = 3).
Fig. E.11. The eigenvalues of (E.11) at the coexistence point for d = 0.65, µ′(s∗) = 0.1, R = 2.5. In the first four panels the eigenvalues are marked on the complex plane
for four different points in parameter space corresponding to increasing values of b. In (a) all three points are on the left side of the complex plane, meaning a stable point.
In (b) the two complex-conjugate eigenvalues have crossed the imaginary axis to the right side of the plane in a Hopf bifurcation and a limit cycle had appeared. At point (c)
the two eigenvalues have crossed back to the left in another Hopf bifurcation and now the fixed point is stable again. Finally, in (d) the third real eigenvalue that had been
steadily increasing has crossed the imaginary line and the coexistence point becomes unstable. The coexistence fixed point has gone through a transcritical bifurcation and
is no longer physical.
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(a) µ′(s∗) = 0.5. (b) µ′(s∗) = 1. (c) µ′(s∗) = 1.5.

Fig. E.12. Stability regions on the b − R parameter space for d = 1.5 and different values of µ′(s∗). Shading is as in Fig. 6.
on the b − R plane are displayed in Fig. 6, and two features are
apparent.

First, close to the boundary of the existence region defined by
Eq. (E.7) the point is stable. For d > 1 the boundary is defined by
bR2

= d(R − 1)(b + 1)2, with R ∼ d/b for small b and R ∼ db
for large b. By passing this curve the coexistence point becomes
unphysical (negative values). For d < 1 part of the boundary is
now defined by R = b + 1 and when this line is crossed, only
the v∗ of the coexistence point becomes negative, thus defining the
exclusion state. This is a transcritical bifurcation as evident by the
change of stability between the two fixed points over this line. The
other part of the boundary of the dark gray region (close to the
b = 0 axis), is determined by the other existence condition for this
state (see Eq. (E.7)). Notice that since the continuum of trivial fixed
points on the s axis extends up to su = min


µ−1(1), µ−1

 1+b
R


,

then su = µ−1(1) if the stable state is the exclusion state and
su = µ−1

 1+b
R


and in both cases su = s∗ (by Eqs. (E.5) and (E.6)).

Second, the stability regions clearly show a certain ‘‘cut-
out’’ area where the coexistence point loses stability while still
maintaining positive concentrations. Numerical integration shows
that in this region a stable limit cycle appears around the fixed
point (see Fig. E.10). This suggests a supercritical2 Hopf bifurcation.
This can be validated by looking again at the eigenvalues of the
Jacobian:

J =

 µ(s∗) − 1 b µ′(s∗)u∗

0 Rµ(s∗) − 1 − b Rµ′(s∗)v∗

1
(1 + u)2

− dµ(s∗) −dµ(s∗) −dµ′(s∗)(u∗
+ v∗)

 .

(E.11)

According to the Vieta formulas, the product of all three
eigenvalues is the negative of the coefficient of the quadratic term
in the normal form of the characteristic polynomial. That is

λ1λ2λ3 = (1 + b − R)


(1 + b)2d(R − 1) − bR2

bR2

2

µ′(s∗). (E.12)

Since µ(s) is monotonically increasing and R > b + 1 for the
coexistence point to be physical, this product is always negative.
This means that the only way a stable point, with the real values of
all the roots negative, can become unstable continuously is when
two complex conjugate roots pass through the imaginary axis, and
this is the condition for a Hopf bifurcation (see Fig. E.11). On the
stable side of the bifurcation, the coexistence point is a stable

2 Since a small limit cycle always appears around the point at the bifurcation.
focus with decaying oscillations. When b is increased, the spiral no
longer reaches the coexistence point but remains in a stable orbit
around it. If b is further increased, this stable limit cycle will shrink
back into the point in another Hopf bifurcation. Thus, in the region
this stable limit cycle exists, it is the only stable attractor for the
dynamics.

The shape of the limit-cycle region depends on the derivative
of the growth function at the fixed point (µ′(s∗)), and this is the
only effect this parameter has on the stability properties of the
system. As can be seen in Fig. E.12, when the value of the derivative
increases, the area in parameter space where the limit cycle is
stable shrinks; when it approaches zero, it tends to fill all of the
area in which coexistence is possible.
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