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Abstract
A population of cells exhibits wide phenotypic variation even if it is genetically homogeneous.
In particular, individual cells differ from one another in the amount of protein they express
under a given regulatory system under fixed conditions. Here we study how protein
distributions in a population of the yeast S. cerevisiae are shaped by a balance of processes:
protein production—an intracellular process—and protein dilution due to cell division—a
population process. We measure protein distributions by employing reporter green
fluorescence protein (gfp) under the regulation of the yeast GAL system under conditions
where it is metabolically essential. Cell populations are grown in chemostats, thus allowing
control of the environment and stable measurements of distribution dynamics over many
generations. Despite the essential functional role of the GAL system in a pure galactose
medium, steady-state distributions are found to be universally broad, with exponential tails and
a large standard-deviation-to-mean ratio. Under several different perturbations the dynamics
of the distribution is observed to be asymmetric, with a much longer time to build a wide
expression distribution from below compared with a fast relaxation of the distribution toward
steady state from above. These results show that the main features of the protein distributions
are largely determined by population effects and are less sensitive to the intracellular
biochemical noise.

Introduction

In a population of organisms, each individual is unique.
Genetic variation, maintained by various forces, is an
important factor for the survival of the population over long
time scales in the context of ecology and evolution. However,
even a genetically homogeneous (clonal) population exhibits
a large degree of phenotypic variation among its individuals
[1–5]. While the fundamental questions concerning
phenotypic variation were raised many years ago [1, 2, 6], there
has recently been a renewed interest in quantifying variation
by single-cell measurements [7–13]. Microorganisms provide
a convenient model system to study phenotypic variation
in clonal populations. This variation can be characterized
in many ways, such as by the gene expression level, or
by morphological or metabolic characteristics; here we
focus on variation in the expression of a particular protein

among individual yeast cells in a genetically homogeneous
population.

Proteins are produced inside cells in a process that is
regulated at several levels. In particular in eukaryotic cells,
transcription regulation has evolved to exquisitely sensitive
and precise mechanisms that can respond to multiple inputs
[14–18]. However, even precisely regulated genes are variably
expressed in cells grown under homogeneous conditions. This
fact raises fundamental questions about how gene regulation
can remain functional in a variety of conditions; indeed,
protein expression variation has been extensively characterized
in recent years (for a review, see [5]). However, we note
that the functional significance of expression variation can
be assessed only under conditions where the expressed gene
plays an essential role in the cellular function. Thus in
experiments where proteins are expressed from promoters
that are induced by synthetic agents (such as IPTG), or by
external signals irrelevant to metabolism (such as induction
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of the GAL system by galactose in cells grown in raffinose),
only local biochemical aspects of noise in gene expression
are in fact probed. In this work, since we are interested in
variation in a functionally regulated protein, a central feature
of our experiments is the measurement of expression from
GAL promoters under conditions of galactose as a sole carbon
source. This experimental design allows us to gain insight
into the variation inherent to a regulatory system that carries
an essential metabolic role.

At the level of the single cell, there are multiple
mechanisms rendering functionality immune to variation in
gene expression [11, 19, 20]; cell metabolism and growth
are the integrated outcomes of many interacting processes
and under normal conditions cellular homeostasis buffers
against variations in protein content [21–23]. In some cases,
however, variation in the content of particular proteins across
a population can have significant effects on functionality, for
example by allowing a population to adapt to transient stress
[24, 25], or by flipping a genetic switch and initiating a split of
the population into distinct phenotypic subgroups [26–28].
Thus, the functional implications of protein variation are
most crucial at the level of a cell population: it can enable
population survival by providing a substrate for phenotypic
selection under changing environments [24, 29–31]. These
effects are generally important over physiological time scales,
namely times longer than a generation but short relative to the
time typical of mutations and their fixation in the population.
A quantitative characterization of regulated protein variation
from the population point of view is required in order to
understand its role over these time scales.

At the level of the population, one is interested in the
characteristics of protein distributions, their steady states
and stability properties, and their dynamics in response to
perturbations. Recent studies have focused on characterizing
the sources of variation internal to the cell and related
to the small number of molecules involved [4, 5, 7–11,
32–34]. These include many interacting sources with
different stochastic characteristics that generally depend
on the details of underlying biochemical systems. A
cell population, however, is not a statistical ensemble of
independent individuals but a dynamical system. Cells are
continually dividing and proteins are inherited to the newborn
cells; their gene expression state is dependent, among other
things, on these initial conditions determined at cell division.
Thus from the population point of view both the growth history
and the metabolic conditions play important roles in shaping
the population protein distribution. This dynamic problem
spans a wide range of time scales that need to be addressed
both experimentally and theoretically.

Characterizing protein distributions in proliferating cell
populations with sensitivity to the population’s history and
details of cell division necessitates special measurement
systems. It requires following the population at single-
cell resolution over several generations under controlled
conditions. It is also necessary to distinguish between
transients—which may last longer than a cell generation
time—and steady states of the population [12]. Environmental
signals regulating gene expression, such as inducing or

repressing substances, need to be applied in a controlled
way and their concentration maintained stably over long time
scales. Standard growth techniques do not allow such control
of the environment. In this work we use a chemostat, a
continuous culture technique, to grow yeast populations under
controlled conditions—a mixed, homogeneous environment—
for many generations, allowing for quantitative investigation
over the relevant time window spanning several generations
(∼10) or longer. We study variations in a protein that is
expressed from a promoter regulating a metabolically essential
system—the galactose utilization system under conditions
where galactose is the sole carbon source. In this context
the chemostat plays an additional important role: yeast cells
that are not metabolically well fitted, namely that do not exhibit
an adequate growth rate, cannot compete in the chemostat and
will be represented poorly in the population. We employ
a reporter green fluorescence protein (gfp) expressed from a
GAL promoter and high-resolution fluorescence microscopy
to quantify the protein distribution in the population, and
to characterize both their steady states and their dynamic
responses to various perturbations. Previous studies have
shown that this method accurately reflects the pattern of the
native GAL system proteins [12, 35]. Direct analysis of
microscope images allows us to overcome artifacts that may
occur while using automated analysis methods [36] and to
analyze in detail the physiological properties of the population
(see below).

We find that the population steady state is universally
characterized by a broad distribution of expressed protein
with a peak near zero and an exponential tail. Increasing the
mean expression by multiple promoters increases the standard-
deviation-to-mean ratio of the distribution. In response to
several perturbations, the relaxation back to steady state is
found to be asymmetric. Repression is much faster than
induction, and is established within two to three generations as
opposed to approximately ten generations. A high-expressing
subpopulation relaxes back to the steady state also within
approximately three generations, while a low-expressing
subpopulation takes much longer, more than ten generations,
to build up the steady-state distribution. Our results, in
particular the time scales that emerge in the dynamics of
distribution, show that population dynamic effects dominate
over the intracellular noise in shaping the protein distribution.

Materials and methods

Plasmid and strain constructions

All experiments were carried out with the haploid yeast
strain YPH499 [Mata, ura3-52, lys2-801, ade2-101, trp1-�63,
his3�200, leu2�1]. Multiple promoters were inserted into the
plasmid vector pESC-LEU (Stratagene) containing pGAL1-
pGAL10 divergent promoters, on which the gfp was inserted
under the GAL10 side of the promoter [12]. Alternatively,
a single gfp copy was integrated into the genome at the
LEU2 locus by using the plasmid pRS405 cloned with the
gfp downstream GAL10 promoter [12].
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Cell growth and microscopy

Cells were grown in homemade chemostats as described in
[12]. Dilution rates were varied between experiments in the
range of 0.06–0.2 l h−1. This corresponds to a generation
time between 11 and 3.5 h. We used synthetic dropout
medium lacking leucine and 2% of pure galactose (or pure
glucose) as a sole carbon source, 1.7 g l−1 yeast nitrogen base,
5 g l−1 ammonium sulfate, 1.4 g l−1 amino acids dropout
powder (Sigma), 0.02 g l−1 L-histidine, 0.04 g l−1 L-tryptophan,
0.02 g l−1 uracil, 20 g l−1 galactose or 20 g l−1 glucose. The
chemostat was amino acid limited. Typical populations in
the chemostat contained 109–1010 cells. The turbidity and the
fluorescence level of the culture were monitored during the
experiment. Fluorescence measurements were performed
using an inverted microscope (Zeiss Axiovert 135) with 100×
oil-immersed objective and 100 W mercury lamp.

Time-lapse measurements of single cells were done by
a homemade temperature-stabilized incubator on the stage of
the fluorescence microscope. Bright-field and fluorescence
images were captured at regular time intervals with minimal
exposure of the cells to light.

Image analysis

Basic image analysis was done as described in [12]. The
procedure employs a combination of analysis by ImagePro
with our homemade-developed software. It produces the
histogram of cell sizes and cell fluorescence in samples of the
population consisting of several thousand cells at each time
point. In addition, we identified and tagged pairs of mother
and bud cells for separating subpopulations and for following
the inheritance of proteins across generations. From each
experiment, several hundred such pairs could be identified.

Plasmid copy number measurements

The mean plasmid copy number was measured by real-time
PCR (AB 7700). Measured amounts of ACT1 prepared by PCR
served as a ruler. Total DNA was purified from cells harvested
from the chemostat (Invitek Tissue kit). The number of gfp
DNA sequences was compared to that of GAL4 and ACT1. The
GAL4 to ACT1 ratio was used to estimate the measurement
errors. Maximal errors were less than 3% in duplicates at the
same PCR measurement and less than 15% between separate
PCR measurements.

Cell separation

The separation of cells was done using a FACSVantageSE cell
sorter (Becton Dickinson). Approximately the same number
of cells was sorted from the two ends of the fluorescence
distribution. The cells were immediately grown in the same
galactose-rich medium described above at 30 ◦C. The cell
growth rate was estimated by plating cells from the two
subpopulations from the onset of separation at regular time
intervals on YPD plates and then counting colonies. Samples
of cells were scanned under the fluorescence microscope at
regular time intervals for fluorescence distribution estimates.

Monte Carlo simulations

A large population of cells (∼100 000) was followed across
generations. In each generation, each cell produced an amount
of protein drawn from a given distribution representing the
internal cellular protein production stochastic properties. At
the end of each generation the cells divided and their protein
content was distributed according to the binomial distribution
with a fixed mean fraction f. This enabled us to describe the
asymmetric division in the budding yeast. The population was
kept at a constant size by random washout. The convergence
was monitored by computing the first two moments as a
function of generations.

Results and discussion

Steady-state distributions

The chemostat is the only growth technique that enables us
to distinguish clearly between transient responses and steady
states of a regulatory system in proliferating populations
[12, 23, 25]. We have used the chemostat to grow populations
of yeast cells to steady state with high-concentration galactose
(2%) as the sole carbon source; under these conditions the
GAL regulation system is expected to be strongly induced.
Using fluorescence microscopy, we measured the single-cell
fluorescence level of a gfp reporter expressed from the GAL10
promoter in a sample of cells and constructed a histogram
representing the population distribution (figure 1). At steady
state the population is characterized by a broad expression
distribution with a peak at a relatively low fluorescence level
and an exponential tail. Figure 1(a) compares the distributions
of expression from a single promoter integrated into the
genome with that from promoters on multiple-copy plasmids.
Both distributions exhibit exponential tails, with standard-
deviation-to-mean ratios of σ/µ = 0.6 and 1 respectively.
These values are surprisingly large considering the metabolic
role of the GAL system in pure galactose. It is noted that the
ratio σ/µ increases with increasing mean, in contrast to the
expected behavior of microscopic random fluctuations. This is
the result of the long exponential tail that builds as the source
of protein production is increased. In the experiments that
follow, it will be shown that this empirical relation between
σ/µ and µ is maintained under various conditions.

Figure 1(b) shows the fluorescence histograms from many
separate experiments with different chemostat dilution rates
and limiting nutrients. The scaled fluorescence distributions
(normalized to unit mean) exhibit two universality classes,
corresponding to those shown in figure 1(a), independent of
the growth medium or dilution rate. This universality enables
us to pool together data from several experiments with a single
promoter, thus revealing in more detail the exponential tail of
this distribution (figure 1(b), inset). We note that previously
published results [12] show that these main features of the
expression distribution are not a result of the growth technique
using a chemostat—growing cells in a serially diluted batch
culture results in similar distributions.

What are the microscopic mechanisms underlying the
broad expression distribution at steady state? The yeast
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Figure 1. Steady-state fluorescence distributions. gfp was expressed
from GAL10 promoters in populations of yeast cells grown to
steady state in chemostats with high concentrations of galactose
(2%) as the sole carbon source. (a) Comparison of expression
distributions from a single promoter (integrated into the
chromosome; black circles) and multiple promoters (on 2µ
plasmids; red diamonds). The two distributions have a near-zero
maximum, with a common crossover point to an exponential tail.
(b) Different populations grown under different conditions, such as
chemostat dilution rate and nutrient composition, cluster into two
shapes of the distribution according to the promoter number and
independent of other conditions. The standard-deviation-to-mean
ratios in the two families of distributions are 0.62 ± 0.02 and 1.03 ±
0.04. Inset: pooling together statistical data from several
experiments with the single promoter strain reveals an exponential
tail in these distributions over several decades in probability density.

S. cerevisiae proliferates by budding, and thus at a given
time the population is a mixture of adult cells and buds at
different growth stages. Recent work on the yeast GAL
system utilizing FACS measurements has indicated that this
population structure is an important source of variation in
gene expression in the regime of high mean expression [13].
In this work we analyze microscope images of the yeast
population rather than measuring the fluorescence distribution
by automatic FACS. This enables us to assess the contribution
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Figure 2. Yeast population structure—mother cells and buds. By
identifying pairs of mother cells and buds in microscope images (see
Methods), we constructed histograms of the different yeast
subpopulations. (a) Cell projected area clearly reflects the
population structure: buds are small in area and make up a relatively
broad distribution (green stars; σ/µ = 0.34) since they are sampled
at different stages of growth. Mother cells are larger and make up a
narrower (red circles; σ/µ = 0.19), approximately Gaussian
distribution of sizes. (b) Fluorescence density is distributed
independently of position along the cell cycle; distributions of
mother cells (red circles; σ/µ = 0.8), buds (green stars; σ/µ =
0.86) and total population (black squares; σ/µ = 0.86) are very
similar. (c) The distribution of total fluorescence carries a signature
of the differences in cell area distributions, but all parts of the
population have an exponential tail: buds (green stars; σ/µ = 1.19),
mother cells (red circles; σ/µ = 0.94) and total population (black
squares; σ/µ = 1.1).

of the population structure directly, by examining the cell-
size distribution and by analyzing separately subpopulations
of mother cells and buds (see Methods). The cell-size
distribution (figure 2(a)) clearly reflects the structure of the
population: it is a superposition of the size distribution of
the mother cells, a narrow distribution centered on a high
value (red circles), and the size distribution of buds, a broad
distribution of small sizes (green stars). In contrast, the
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gfp density distribution (fluorescence per unit projected area;
figure 2(b)) is practically indistinguishable between the two
subpopulations. The total fluorescence (figure 2(c)) shows
some difference due to the differences in cells size, but both
subpopulations have similar exponential tails and standard-
deviation-to-mean ratios. We therefore conclude that the main
features of the steady-state expression distribution, the peak
near zero and the exponential tail, are not a result of the cell-
size distribution or the presence of a mixture of mothers and
buds in the population. We note that in our experiments, in
contrast to most previous work (in particular [13]), galactose is
the sole carbon source and therefore the expression of the GAL
genes is strongly connected to other parts of cell metabolism;
it is this expression, which is of functional significance, that is
of interest here. If galactose is used only as an inducing agent
and a more readily metabolizable carbon source is supplied
(e.g. raffinose), the expression of the GAL genes is mainly
determined by local biochemical properties of the expression
circuit and by the population size structure. Indeed, the
variation in that case (σ/µ ∼= 0.25) [13] is much smaller than
that observed here (σ/µ = 0.6 or 1).

With high-copy plasmids in yeast, the precise number
of promoters varies from cell to cell. One may expect
this variation to play an important role in determining the
expressed protein distribution. However, in eukaryotic
regulated modules such as the GAL system, this is not
necessarily true because expression from a large number of
promoters is controlled by an extremely small number of
transcription factors. In the GAL system, for example, there
are typically a few copies of the GAL4 transcription factor
[37], which bind in dimer form, and more than ten binding
sites on the different GAL promoters [38]. In addition, there
are many other GAL4 transcription factor binding sites, not
related to the GAL genes, throughout the genome [39]. In
pure galactose, all GAL promoters need to be active; therefore
the natural system is strongly limited by the availability of
transcription factors rather than by promoter copy number.
In this regime, the sensitivity of expression to the promoter
copy number is expected to be very low. We have verified
this hypothesis by the direct measurement of mRNA levels of
the native GAL genes by real-time PCR, showing that these
levels are the same in both our yeast strains, with a single
additional GAL promoter and with the addition of ∼40 GAL
promoters on plasmids ([12], table 1). A comparison of the
gfp mRNA levels between the two strains shows only a sixfold
increase in gfp mRNA expression (see table 1 in [12]). Thus,
there is a nonlinear relation between the number of promoters
and the level of expression, presumably due to limitation of
transcription factors. Note that the situation described here is
typical of many eukaryotic regulation modules [40].

To study directly the sensitivity of the expression
distribution to the mean number of promoters, we used the
plasmid copy number as a control parameter. We performed
an experiment in which the yeast cells were switched to an
environment that is non-selective for the plasmids. Figure 3
shows the gfp fluorescence distributions at different time
points along this experiment (3(a)), together with a direct
measurement of the mean gfp-expressing plasmid copy
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Figure 3. Relation between plasmid copy number and fluorescence
distribution. In our yeast strains, the 2µ plasmids are selected for by
lack of leucine in the medium. Here the selection has been removed
by adding leucine to the medium, and fluorescence distributions
were followed over time together with changes in the plasmid copy
number (see Methods). (a) Fluorescence distributions at different
times following removal of selection. The distributions are stable
for approximately 100 generations before it changes significantly.
The exponential tail then decreases in weight relative to the head of
the distribution, until it converges to a shape similar to the
single-promoter strain (inset). (b) Plasmid copy number, measured
directly by real-time PCR. Colored arrows indicate time points
where the distributions, plotted with the corresponding colors, were
measured in (a). It is seen that the plasmid copy number changes by
almost a factor of 2 before the distribution changes significantly.

number in the population (3(b)). It is clearly seen that the
distribution is completely insensitive to the plasmid copy
number within a wide range: loss of half of the initial plasmids,
over a time scale of approximately 80 generations, does not
affect the distribution at all. Note that with the release of the
selection pressure not only the mean but also the variation in
plasmid copy number is expected to change (rise) significantly.
This implies that, in the regime of high mean copy number,
the direct contribution of plasmid copy number variation to
protein variation is negligible.

When the copy number dropped below a critical value,
(∼7), the protein distribution changed its shape and converged,
at a low copy number, to a distribution similar to that exhibited
by the integrated single-copy promoter (figure 3(a), inset). At
intermediate levels of mean plasmid copy numbers, the mean
fluorescence in the population decreased but the exponential
tail was preserved with a similar slope, as seen in figure 4. The
ratio between standard deviation and mean in this dynamic
process remained fixed. This implies that there is no direct
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Figure 4. Distributions during plasmid loss by non-selective
medium. The chemostat was switched to a medium containing
leucine at t = 0, causing plasmid loss by the non-selective medium
(similar to the experiment of figure 3). Distributions were
constructed from particularly large samples of the population, thus
highlighting the changes in the exponential tail. The loss of
plasmids results in a change in proportion between the head and tail
of the distribution while maintaining the slope of the tail. Lines
correspond to best fit of the tail to y = A e−x/ξ . Parameter values:
A = 0.002, 0.0011, 0.0005; 1/ξ = 0.0028, 0.0032, 0.003 for the
black, red and green curves respectively. σ/µ = 1.08, 1.16 and 1.11
respectively. The dynamics of the expression distribution during
plasmid loss are very different from the dynamics of repression by
glucose (figure 9), which results in a strong change of the slope of
the exponential tail accompanied by a significant change in σ/µ.

relation between the exponential tail and the plasmid copy
number, because if this were the case the loss of plasmids
could not be uniform throughout the tail but would depend on
the position in the tail [41]. Moreover, the protein variation,
as reflected in the ratio between standard deviation and mean,
is independent of the mean plasmid copy number, even in this
regime where the distribution changes its shape. In conclusion,
the dependence of the expression distribution on plasmid copy
number is strongly saturated. In particular, the hallmark of
the expression distributions—an exponential tail and a large
standard deviation over mean—is insensitive to the promoter
copy number in the regime of our experiment.

Processes shaping the steady-state distribution

The previous section has ruled out several hypotheses
concerning the molecular mechanism underlying the broad
expression distribution at steady state, including variations
in cell size and in plasmid copy number. Together with the
independence of the distribution on growth conditions, our
results suggest that the distribution is not a direct result of a
single molecular mechanism, and that it is insensitive to the
details of the intracellular noise. To further test this hypothesis,
we performed simulations of a dividing cell population with
different intracellular protein production characteristics and
different division characteristics, and computed the steady-
state distributions (see Methods). Figure 5 shows that the
main features of the protein distributions—a large standard-
deviation-to-mean ratio, a peak near zero and an exponential
tail—can be reproduced with different models of intracellular
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Figure 5. Steady-state protein distributions from Monte Carlo
simulations of a dividing population. The figure shows that an
exponential tailed distribution, similar in nature to the one observed
in the experiments, can be obtained by different characteristics of
the internal cellular production process and division properties:
stochastic production and degradation of mRNA, which produces
protein by a Poisson process, with symmetric division (f = 0.5,
black. Here we took an average of two mRNA molecules produced
per generation and a production rate to match the total protein
production rate per generation with the other models.); Poissonian
production at a constant rate with asymmetric division (f = 0.75,
red); and protein production drawn from an exponential distribution
with symmetric division (green). These results show that measuring
the steady-state distribution does not provide sufficient information
about the internal cellular and population processes.

noise source and cell division. These simulations show that
the steady-state properties are not determined by the details of
the intracellular noise.

Therefore, rather than trying to trace the sources at the
molecular level, we adopted a phenomenological approach to
the problem: we perturbed the population and measured how
the total distribution relaxed back to the steady state. Using
fluorescence-activated cell sorting (FACS), we separated
out two subpopulations from the two extreme ends of the
steady-state distribution, as illustrated in figure 6(a). These
subpopulations were then separately grown in the same
galactose-rich medium, and the fluorescence distribution
and growth rates were monitored over several generations
from the time of separation. The growth rates of the two
subpopulations were found to be indistinguishable; in yeast
cells, the growth rate is a direct consequence of the total
metabolism, showing that the distribution does not correspond
simply to variations in metabolic state across the population.
Figure 6(b) shows that the dynamics of the fluorescence
distributions of the two subpopulations were significantly
different. The subpopulation starting at the high-fluorescence
end converged back to the steady-state distribution within three
to five generations. By contrast, for the low-fluorescence end
subpopulation, the distribution steadily increased toward the
steady state but had not reached it even after as much as nine
to ten generations. The long time scales and asymmetry of
this relaxation clearly show that a dividing cell population is
very different from an ensemble of independent realizations
of biochemical noise. The measured distribution reflects
not only the internal cellular mechanisms, but necessarily
also dynamic processes with typical time scales longer than
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Figure 6. Asymmetric relaxation to steady state following a sorting
perturbation. (a) Starting from a steady-state distribution (black
histogram), fluorescence activated cell sorting (FACS) was used to
separate the high-end 1% from the low-end fluorescence 1% of the
population, illustrated here schematically by red and blue shaded
regions respectively. These subpopulations were then grown
separately by serial dilution in the same galactose-rich medium, and
their growth rate and fluorescence distributions were measured over
time. The growth rate was indistinguishable in the two
subpopulations. (b) The fluorescence distributions, however, relaxed
in an extremely asymmetric manner: the high-fluorescence end (red
curves) has already returned to the steady-state distribution after
approximately three generations, and the low-fluorescence end (blue
curves) was still relatively low after as much as nine generations
(circles: t = 23 h, plus: t = 38 h).
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Figure 7. Protein correlations among generations in a steady-state yeast population. (a) Protein density, defined as the fluorescence signal
per unit projected area in microscope images, is plotted for identified mother–daughter pairs in two steady-state populations, red and blue
dots. (b) Protein content in a mother and bud during bud growth, measured by time-lapse microscopy. The ratio between mother and bud
cell volume is shown as a function of time during bud growth (black line), together with the difference in fluorescence density (red line),
which decreases to zero at the end of the process. These results show that protein transfer is dominated by fast diffusion, resulting in a high
correlation among generations, so that dilution in the population is essentially a fractional process: at cell division, an approximately fixed
fraction of the total protein is lost to the next generation.

a cell generation and involving cell division and protein
inheritance.

The budding yeast provides a unique opportunity to
directly measure the protein inheritance across consecutive
generations. Figure 7(a) shows the gfp density in mother cells
and corresponding daughter cells, measured from identified
pairs in steady-state populations (see Methods). There is a
strong correlation between them (correlation coefficient ∼0.9),
with a slope close to 1 and with relatively small dispersion.
Figure 7(b) shows a time-lapse microscopy measurement of a
single mother–daughter pair during bud growth. In agreement
with figure 7(a), it shows that the protein density tends to
equilibrate between the two cells and reaches approximately
the same value at the end of bud growth, corresponding to
protein diffusion that is fast relative to bud growth. These
results show that the budding process ensures similar gfp
densities in mature buds and their mother cells, rendering the
new generation essentially a duplicate of the old one in terms
of density. This reliable protein inheritance process induces
strong dissipative loss of protein proportional to the existing
resources in the mother cells and enables a fast convergence
of the distribution to steady state after perturbation.

The protein distribution in the population is thus formed
by a balance between two opposing processes: a dilution
process (due to cell division) and a production process (protein
production). The fractional nature of loss at division—
the mother cell loses a fixed fraction of its existing protein
content—leads to adjustment of the dilution process to the
production process. The time scale of dilution is expected
to be relatively short, and thus the population can undergo
transitions from a high distribution to a lower one within
a small number of generations. This is consistent with
the rapid decay of the high-end fluorescence subpopulation,
described above in the FACS experiment (figure 6). It is also
consistent with previously observed rapid transitions that occur
spontaneously (over three to five generations) from a broad to
a narrower distribution in similar chemostat experiments [12].
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Figure 8. Induction of the GAL system—a population view.
(a) Fluorescence distributions during induction. Starting from the
non-inducing, non-repressing raffinose (black histogram), the
population was switched to pure galactose which induces the GAL
system. It is seen that along the process the exponential tail of the
distributions increases, whereas the crossover between the head and
exponential tail remains fixed. Inset: mean fluorescence, calculated
from the distributions, as a function of time. The generation time is
approximately 5 h. (b) Relations between standard deviation and
mean of distributions along the induction process. The standard
deviation is a shifted linear function of the mean (left),
corresponding to an increasing standard-deviation-to-mean ratio
(right).

Dynamics of protein distributions

The GAL system, being a metabolic switch that responds
to carbon source, enables us to characterize induction and
repression dynamics as reflected in protein distributions. To
induce the GAL system we inoculated the chemostat with cells
grown first in pure raffinose, which is non-inducing and non-
repressing to the GAL system; we operated the chemostat in
pure galactose medium and monitored the time evolution of
the gfp distribution (expressed, as before, from the GAL10
promoter). Figure 8(a) shows that the exponential tail of the
distribution is extremely sensitive to the protein production
process, determined here by the induction of the promoters.
During this time the culture density in the chemostat remained
stable. This implies that the GAL promoters have been induced
within a short time and that cell metabolism had reacted
quickly (within a single dilution time) to the medium switch
from raffinose to galactose. Still, the protein distribution in
the population takes an extremely long time (order of ten

generations) to build up toward the gfp fluorescence steady-
state distribution. The inset to figure 8(a) shows the mean
fluorescence in the population as a function of time along the
buildup process of the distribution. It shows that there exists
a significant barrier to be passed when increasing the protein
content in the population against the dilution forces, consistent
with the long time scale for increase starting from a low-
expression subpopulation in the FACS experiment described
above (figure 6). Examining the shape of the distribution
throughout the induction process, it is seen that the crossover
point between the head and the exponential tail remained
approximately fixed; the slope of the exponential, as well as the
relative weight of the two components, changed as a function
of time. The standard deviation and mean of the distributions
obey an empirical linear relation along the induction process
and their ratio is an increasing function of the mean
(figure 8(b)). This is in contrast to a global scaling relationship
found recently over many different genes and conditions
[36, 42]. The particular relation observed here is consistent
with the distributions being made up of two independent
components, one relatively narrow and independent of the
induction, and the other with an exponential tail that increases
along the induction process (see the appendix).

The opposite dynamics of repression was observed by
switching the chemostat medium from pure galactose to
pure glucose. Figure 9(a) shows the time evolution of the
distributions, starting from the broad galactose steady state and
decreasing toward a narrower distribution in glucose. Once
again, the crossover point between the head of the distribution
and the exponential tail remained approximately fixed, while
the tail responded sensitively to the repression conditions. We
have shown in a previous work that the lower distribution
shown here is not the true steady state of the system in
glucose, due to long-term adaptation dynamics [12]. Here,
we concentrate on the transient repression in response to the
medium switch to glucose. The inset of figure 9(a) shows
that the mean fluorescence decays rapidly and reaches the
repressed population state in approximately one generation; in
this process, the population kinetics parallels the intracellular
promoter repression kinetics. This is in marked contrast to the
long time scale revealed in the population induction process.
The strong dissipation induced by protein dilution in cell
division acts against the induction process while it acts in the
same direction as repression. This fast repression is consistent
with the short relaxation time scale of the distribution starting
from a high-expression subpopulation in the FACS experiment
described above (figure 6).

The main features of the distributions throughout the
repression process are similar to those during induction, as
shown in figure 9(b). In both cases, the exponential tail is
sensitive to the activity of the GAL system, which is the source
of protein production. The standard-deviation-to-mean ratio,
once again, is an increasing function of the mean during the
process—in this case, decreasing as a function of time.

Conclusion and outlook

Much recent work has been devoted to dissecting the
different sources of variation in gene expression. In some
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Figure 9. Glucose repression of the GAL system—a population view. (a) Starting from the pure galactose steady state (green triangles), the
chemostat was switched to pure glucose as the sole carbon source, which rapidly repressed the GAL system, reflecting a decrease in the
fluorescence distribution. As in the induction process, the exponential tail changes its slope during repression, while the crossover point
between the head and tail of the distribution remains fixed. Inset: mean fluorescence as a function of time, showing that in contrast to
induction, repression is extremely rapid in the population. (b) Relations between standard deviation and mean during repression.

studies artificial expression systems were used, or induction
was applied artificially (where the expressed gene was not
functionally essential). In these experiments it is often
possible to relate statistical properties of gene expression to the
detailed biochemistry of the specific regulation circuit since
it is detached from many other cellular processes. Other
studies have considered the large-scale behavior of natively
regulated proteins by using automated FACS measurements.
It was shown that particular gating procedures can separate
out the intrinsic component of variation, which is dominated
by biochemical noise [36]. In these studies generally growth
and preparation were not characterized in detail, for example
the difference between transient and steady state was not
emphasized. Moreover, in recent work measurements from
different time points relative to different applied conditions
were pooled in one statistical analysis, making it difficult to
characterize particular cellular processes [42].

In the current work we studied the behavior of a
protein under the regulation of a system that is essential
for metabolism—the GAL system in pure galactose medium.
Special attention was paid to culture preparation and growth.
Under these conditions, it was shown that several simple

mechanisms that could account for the distribution are in
fact not the main sources of variation. In particular,
the biochemical noise in gene expression, heterogeneity in
cell size and variations in promoter copy number are not
the main mechanisms underlying the observed variation.
From the population point of view, it is the total variation
that is functionally important; we have therefore directed
the focus of our research from tracing and separating
molecular mechanisms to a phenomenological approach which
emphasizes dynamics of distributions along time.

We have characterized the total variation in the population
in terms of the protein distributions, their steady states
and dynamics in response to perturbations over intermediate
(∼ten generations) time scales. We found that steady-state
distributions of a regulated essential system are universally
broad, in contrast to a naı̈ve single-cell picture in which
each and every cell must strongly ‘turn on’ expression
under inducing conditions. The shape of the steady-state
distribution was independent of medium composition and
growth characteristics over a wide range of conditions.
Interestingly, the broad exponential-tail distribution is not
unique to the budding yeast but was also observed in a
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different regulatory system in bacteria dividing by fission [43].
Such common behavior of the distribution tails in different
regulatory systems supports the view that it is not the internal
cellular processes that determine the steady-state distribution
but rather a more general population balance of processes.

We have found in several different experiments
a marked asymmetry between the relaxation dynamics
of subpopulations depending on their initial conditions:
transitions are much slower for subpopulations that need to
ignite protein sources and build the steady-state expression
distribution from below than for those that need to dilute high
stocks of proteins and build the steady-state distribution from
above. This asymmetry clearly shows that, under conditions
where the underlying regulatory system is functionally
essential, the distribution is not a realization of an ensemble of
independent particles, each with its own internal noise source.
Rather, it demonstrates the important role of population
dynamics in constructing and maintaining the steady state.
The distribution is a result of a balance between a source of
protein production, which is intracellular and noisy, and a
strong dilution process that dissipates a constant fraction of
the protein content in each generation by cell division.

The population point of view presented here calls for a
quantitative understanding of gene regulation at the population
level, complementing the single-cell level. At the population
level, the history of the population and the mechanisms
of protein inheritance among generations play crucial roles
in determining the main features of the protein expression
distributions. These features are most crucial for the
population fate, since the expression distribution provides the
substrate for selection and adaptation.
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Appendix. Histogram analysis—relation between
standard deviation and mean

During induction and repression, the standard deviation and
mean of the protein distributions obey the linear relation
σ = aµ − b, with positive constants a and b (fitting lines in
figures 5 and 6; a ∼= 1.3 and b ∼= 50 in both cases).
Accordingly, the ratio σ/µ is an increasing function of
µ:σ = a − b/µ (fitting lines in figures 5 and 6). This
relation is consistent with the population distribution being
composed of two independent parts: an exponential tail that
is sensitive to induction and repression, and a narrower
‘head’ of the distribution that is less sensitive to protein
production: x = x0 + x1. Assuming that 〈x0x1〉 = 〈x0〉〈x1〉
(statistical independence), σ(x1) ≈ 〈x1〉 (exponential tail) and
σ 2(x0) � σ 2(x1) (much narrower head), one can estimate
the standard deviation of the total random variable: σ(x) ∼=
σ(x1) = 〈x1〉 = 〈x〉 − 〈x0〉. This is exactly the relation
observed in the experiments with a = 1.

Glossary

Phenotypic variation. Differences among cells or
organisms other than in their DNA sequences. Phenotypic
variation can exist among cells in clonal (genetically
homogeneous) populations grown under homogeneous
conditions and thus do not stem from differences in the
genomes of these cells.

Gene regulation. The processes controlling the expression
of genes from their coding in DNA sequence into proteins.

Transcription. The process in which regulatory proteins
(transcription factors) interact with each other and bind to
specialized DNA sequences to control the process of gene
expression. This is the first and usually most significant step
in gene regulation.

Reporter gfp. A green fluorescent protein that is inserted
into a cell under the control of a particular regulatory system
that is of interest. This way, the gene regulation system
controls the expression of a protein that is quantitatively
measurable by optical methods in live cells. These
measurements provide useful information about the
regulation system: its level of activity, dynamics, sensitivity
etc.

GAL system. A group of genes responsible for utilizing
galactose as a source of energy and carbon in the yeast
S. cerevisiae. These genes have common components to their
regulation system, and are known to respond directly to the
type of sugar available to the cells.

FACS. Fluorescence activated cell sorter. A technique for
measuring certain cellular properties (such as the expression
of a fluorescent protein) at single-cell resolution in large
cell populations. The distribution of these properties in the
population can then be estimated, and the cells can be
physically sorted to different groups according to these
properties.

Chemostat. A technique for growing cell populations (e.g.,
of microorganisms) in continuous culture. The proliferating
population is fed at a constant rate, and cells and medium are
diluted out at the same rate preserving the volume fixed. The
population can be grown under fixed environmental
conditions and can achieve a steady state in which the
number of cells in the growth chamber is also fixed.

References

[1] Spudlich J L and Koshland D E J 1976 Non genetic
individuality: chance and the single cell Nature 262 467–71

[2] Wheals A E and Lord P G 1992 Clonal heterogeneity in
specific growth rate of Saccharomyces cerevisiae cells Cell
Prolif. 25 217–23

[3] Korobkova E et al 2004 From molecular noise to behavioural
variability in a single bacterium Nature 428 574–8

[4] Raser J M and O’Shea E K 2005 Noise in gene expression:
origins, consequences, and control Science 309 2010–3

181

http://dx.doi.org/10.1038/262467a0
http://dx.doi.org/10.1038/nature02404
http://dx.doi.org/10.1126/science.1105891


N Brenner et al

[5] Kaern M et al 2005 Stochasticity in gene expression: from
theories to phenotypes Nat. Genet. 6 451–64

[6] Berg O G 1978 A model for the statistical fluctuations of
protein numbers in a microbial population J. Theor.
Biol. 71 587

[7] Elowitz M B et al 2002 Stochastic gene expression in a single
cell Science 297 1183

[8] Ozbudak E M et al 2002 Regulation of noise in the expression
of a single gene Nat. Genet. 31 69

[9] Blake W J et al 2003 Noise in eukaryotic gene expression
Nature 422 633

[10] Banerjee B et al 2004 Tracking operator state fluctuations
in gene expression in single cells Biophys. J.
86 3052–9

[11] Raser J M and O’Shea E K 2004 Control of stochasticity in
eukaryotic gene expression Science 304 1811

[12] Braun E and Brenner N 2004 Transient responses and
adaptation to steady state in eukaryotic gene regulation
system Phys. Biol. 1 67

[13] Volfson D et al 2006 Origins of extrinsic variability in
eukaryotic gene expression Nature 439 861–4

[14] Yanofsky C 1992 Transcriptional regulation: elegance in
design and discovery Transcriptional Regulation (New
York: Cold Spring Harbor Laboratory Press) p 3

[15] Holstege F C and Young R A 1999 Transcriptional regulation:
contending with complexity Proc. Natl. Acad. Sci. USA
96 2

[16] Struhl K 1999 Fundamentally different logic of gene
regulation in eukaryotes and prokaryotes Cell 98 1

[17] Kornberg R D 1999 Eukaryotic transcriptional control
Millenium issue TCB TIBS TIG M46

[18] Biggin M D 2001 To bind or not to bind Nat. Genet.
28 303

[19] Atauri P de et al 2005 Is the regulation of galactose
1-phosphate tuned against gene expression noise? Biochem.
J. 387 77–84

[20] Pedraza J M and Oudenaarden A van 2005 Noise propagation
in gene networks Science 307 1965–9

[21] Kacser H and Burns J 1981 The molecular basis of dominance
Genetics 97 639–66

[22] Nijhout H F et al 2004 A mathematical model of the folate
cycle—new insights into folate homeostasis J. Biol. Chem.
279 55008–16

[23] Brauer M J et al 2005 Homeostatic adjustment and metabolic
remodeling in glucose-limited yeast cultures Mol. Biol.
Cell 16 2503–17

[24] Booth I R 2002 Stress and the single cell: intrapopulation
diversity is a mechanism to ensure survival upon exposure
to stress Food Microbiol. 78 19–30

[25] Stolovicki E et al 2006 Synthetic gene-recruitment reveals
adaptive reprogramming of gene regulation in yeast
Genetics 173 75–85

[26] Ptashne M 1992 A Genetic Switch: Phage l and Higher
Organisms (Cambridge, MA: Cell Press)

[27] Krishna S et al 2005 Stochastic simulations of the origins and
implications of long-tailed distributions in gene expression
Proc. Natl. Acad. Sci. 102 4771–6

[28] Colman-Lerner A et al 2005 Regulated cell-to-cell variation in
a cell-fate decision system Nature 437 699–706

[29] Lachmann M and Jablonka E 1996 The inheritance of
phenotypes: an adaptation to fluctuating environment
J. Theor. Biol. 181 1–9

[30] Thattai M and van Oudenaarden A 2004 Stochastic gene
expression in fluctuating environments Genetics 167 523

[31] Kussell E and Leibler S 2005 Phenotypic diversity, population
growth and information in fluctuating environments
Science 309 2075–8

[32] McAdams H H and Arkin A 1997 Stochastic mechanisms in
gene expression Proc. Natl. Acad. Sci. 94 814–9

[33] Swain P S, Elowitz M B and Siggia E D 2002 Intrinsic and
extrinsic contributions to stochasticity in gene expression
Proc. Natl. Acad. Sci. USA 99 12795

[34] Paulsson J 2004 Summing up the noise in gene networks
Nature 427 415

[35] Li J et al 2000 Green fluorescent protein in Saccharomyces
cerevisiae: real-time studies of the GAL1 promoter
Biotechnol. Bioeng. 70 187

[36] Newman J R S et al 2006 Single-cell proteomic analysis of
S. cerevisiae reveals the architecture of biological noise
Nature 441 840–6

[37] Griggs D W and Johnston M 1991 Regulated expression of the
GAL4 activator gene in yeast provides a sensitive genetic
switch for glucose repression Proc. Natl. Acad. Sci. USA
88 8597

[38] Lohr D, Venkov P and Zlatanova J 1995 Transcriptional
regulation in the yeast GAL gene family: a complex genetic
network FASEB 9 777

[39] Harbison C T et al 2004 Transcriptional regulatory code of a
eukaryotic genome Nature 431 99–104

[40] Jones E W, Pringle J R and Broach J R 1992 The molecular
and cellular biology of the yeast saccharomyces vol 2 (New
York: Cold Spring Harbor Laboratories Press)

[41] Zhang Z, Young M and Chisti Y 1996 Plasmid stability in
recombinant Saccharomyces cerevisiae Biotechnol. Adv.
14 401–35

[42] Bar-Even A et al 2006 Noise in protein expression scales with
natural protein abundance Nat. Genet. 38 636–43

[43] Salman H and Libchaber A 2005 Private communication

182

http://dx.doi.org/10.1038/nrg1615
http://dx.doi.org/10.1016/0022-5193(78)90326-0
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1038/ng869
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1126/science.1098641
http://dx.doi.org/10.1088/1478-3967/1/2/003
http://dx.doi.org/10.1038/nature04281
http://dx.doi.org/10.1073/pnas.96.1.2
http://dx.doi.org/10.1016/S0092-8674(00)80599-1
http://dx.doi.org/10.1038/91045
http://dx.doi.org/10.1042/BJ20041001
http://dx.doi.org/10.1126/science.1109090
http://dx.doi.org/10.1074/jbc.M410818200
http://dx.doi.org/10.1091/mbc.E04-11-0968
http://dx.doi.org/10.1016/S0168-1605(02)00239-8
http://dx.doi.org/10.1073/pnas.0406415102
http://dx.doi.org/10.1038/nature03998
http://dx.doi.org/10.1006/jtbi.1996.0109
http://dx.doi.org/10.1534/genetics.167.1.523
http://dx.doi.org/10.1126/science.1114383
http://dx.doi.org/10.1073/pnas.94.3.814
http://dx.doi.org/10.1073/pnas.162041399
http://dx.doi.org/10.1038/nature02257
http://dx.doi.org/10.1002/1097-0290(20001020)70:2<187::AID-BIT8>3.0.CO;2-H
http://dx.doi.org/10.1073/pnas.88.19.8597
http://dx.doi.org/10.1038/nature02800
http://dx.doi.org/10.1016/S0734-9750(96)00033-X
http://dx.doi.org/10.1038/ng1807

	Introduction
	Materials and methods
	Plasmid and strain constructions
	Cell growth and microscopy
	Image analysis
	Plasmid copy number measurements
	Cell separation
	Monte Carlo simulations

	Results and discussion
	Steady-state distributions
	Processes shaping the steady-state distribution
	Dynamics of protein distributions

	Conclusion and outlook
	Acknowledgments
	Appendix. Histogram analysis---relation between standard deviation and mean
	Glossary-2pt
	References

