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a b s t r a c t

Cooperative interactions, their stability and evolution, provide an interesting context inwhich to study the
interface between cellular and population levels of organization. Here we study a public goods model rel-
evant to microorganism populations actively extracting a growth resource from their environment. Cells
can display one of two phenotypes — a productive phenotype that extracts the resources at a cost, and a
non-productive phenotype that only consumes the same resource. Both proliferate and are free to move
by diffusion; growth rate and diffusion coefficient depend only weakly phenotype. We analyze the con-
tinuous differential equation model as well as simulate stochastically the full dynamics. We find that the
two sub-populations, which cannot coexist in a well-mixed environment, develop spatio-temporal pat-
terns that enable long-term coexistence in the shared environment. These patterns are purely fluctuation-
driven, as the corresponding continuous spatial system does not display Turing instability. The average
stability of coexistence patterns derives from a dynamic mechanism in which the producing sub-
population equilibrates with the environmental resource and holds it close to an extinction transition
of the other sub-population, causing it to constantly hover around this transition. Thus the ecological in-
teractions support a mechanism reminiscent of self-organized criticality; power-law distributions and
long-range correlations are found. The results are discussed in the context of general pattern formation
and critical behavior in ecology as well as in an experimental context.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Cooperative behavior of individuals in nature has attracted the
interest of scientists for many years (Axelrod and Hamilton, 1981;
Michod and Roze, 2001; Nowak, 2006). The evolution and stabil-
ity of cooperation is sometimes formulated as a dilemma or con-
flict between the optimal strategy of the individual and that of the
population. More generally, cooperative interactions and their sta-
bility provide a fascinating context in which to investigate the re-
lations between these two levels of organization — the individual
and the population. Indeed, a biological population is more than
a collection of individuals: it is characterized by its interactions
— direct and indirect, by its memory through inheritance, and by
its relation with the environment (Moore et al., 2013; Stolovicki
and Braun, 2011). Therefore, phenomena at the population level,
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including evolutionary dynamics and long-term stability of indi-
vidual traits, are necessarily affected by all these ingredients.

Populations of microorganisms provide a valuable model sys-
tem to study cooperative interactions. Much is known about the
mechanisms underlying microbial cooperative behavior: muta-
tions, gene expression and other processes affect cellular behav-
ior, which in turn affects the environment and feeds back on the
individual dynamics (Kummerli et al., 2009; Elhanati et al., 2011).
Thus these systems offer concrete test cases for many fundamen-
tal issues at the intersection between the individual, the popula-
tion and the environment. Microbial populations have the great
advantage of allowing controlled experiments, where predictions
can be tested quantitatively; at the same time the detailed bi-
ological knowledge about the processes involved places severe
constraints on the models relevant to these systems (Schuster
et al., 2010; Damore and Gore, 2012). Indeed previous work has
shown that conclusions drawn on fundamental problems may de-
pend subtly on details of realization of the particular biological
system. In the present work we focus on models appropriate for
microbial interactions taking into account carefully the constraints
that they pose.
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One important type of cooperative interaction is induced by the
production of public goods: in a population inhabiting a shared en-
vironment, individuals depend on a resource for their growth or
survival. The resource can be produced or actively extracted from
the environment by the individuals, generally at some cost. Once
produced, it is shared by other population members as well, thus
defining a setting with some degree of cooperation. The more gen-
eral problem known as public goods cooperation has been con-
sidered in several different contexts, from abstract game theory
in which encounter rules are defined (Hauert et al., 2006, 2008),
through theoretical evolutionary models (Doebeli et al., 2004) and
to biophysical aspects of microorganism model systems that se-
crete resource-extracting molecules outside the cell boundaries
(Craig Maclean and Brandon, 2008; Gore et al., 2009; Kummerli
et al., 2009; Velicer and Vos, 2009). In general it is by now well
established that various mechanisms at the population level can
break the symmetry between producers and non-producers, sup-
porting privileged share of the resource to the productive indi-
viduals, or inducing assortment of sub-populations, thus enabling
coexistence of productive and non-productive phenotypes in the
same environment (Nowak, 2006; Damore andGore, 2012). Spatial
structure and mobility, for example, is one such mechanism that
has a strong effect on the public goods problem in its various lev-
els of abstraction (Hamilton, 1971; Eshel, 1972; Nowak et al., 1994;
Irwin and Taylor, 2001; Perc et al., 2013). Intuitively, when cells
are proliferating in different regions in space, and if the coopera-
tive trait is inherited, then it will be directed mainly towards other
cooperators. However, different mechanisms can support coexis-
tence in a spatially extended environment and, once again, their
fundamental nature may depend on the details of the system.

Previous work on spatial public goods dynamics has focused on
a class of models derived from the public goods game in econ-
omy, where a well-defined group interacts by individual con-
tribution and a reward common to the group (Wakano, 2007;
Wakano et al., 2009; Wakano and Hauert, 2011). This model
was transformed to partial differential equations and coexistence
was found in one of two possible cases: (A) coexistence already
emerges in the mean field ordinary differential equation (ODE);
(B) there is no coexistence in the mean field, but a Turing insta-
bility in the spatial model described by partial differential equa-
tions (PDE) induces spatial patterns of coexistence. In this case,
as is typical of the Turing mechanism, the diffusion coefficients of
the producers and non-producersmust differ greatly (Wakano and
Hauert, 2011).

In the context of microbial populations there is no biological
justification to assume a difference in diffusion coefficient between
different physiological states or even different strains of the same
organism. Thus, an argument is needed for the more general case,
where diffusion is not strongly dependent on the production of
common goods, and where co-existence is impossible in the mean
field. We here present and study such a model, which is quite gen-
erally suited formicrobial populations actively extracting a growth
resource from the environment.

In a well-mixed environment with homogeneous interactions,
themodel exhibits an extreme ‘‘tragedy of the commons’’ scenario:
non-productive individuals have a higher fitness, take over the
population, and cause extinction due to the extreme dependence
of growth on the extracted resource. This is the only fixed point
of the well-mixed system, sharpening the question of rescue from
the tragedy of extinction. The model has been proposed and stud-
ied previously in the presence of strategy changes induced by gene
expression, either randomor by environmental feedback; then, co-
existence can be stabilized in a well-mixed system (Elhanati et al.,
2011). Here we resort to the basic resource-extraction dynamics
without change of strategy, but in the presence of spatial and de-
mographic fluctuations.
Embedding the populations in space in a continuous dynam-
ical system description with diffusion does not induce non-
homogeneous solutions; namely, there is no Turing instability (in
contrast to other studied systems of spatial public good games
(Wakano et al., 2009)). However, we find that when the discrete
stochastic nature of the interactions is taken into account, mobil-
ity in space and demographic noise drive the system to a solution
where spatio-temporal patterns prevail and allow a nontrivial co-
existence of the productive andnon-productive sub-populations in
a large region of parameter space. The mechanism underlying this
phenomenon is basedon the existence of an absorbing state extinc-
tion transition, a slow timescale of competition, and the stochastic
dynamics characteristic of a discrete population of cells. We pro-
pose an analogy of this mechanism to self-organized criticality and
discuss its relation spatio-temporal patterns found in other ecolog-
ical models.

2. Methods

2.1. Numerical integration of ODE and PDE

The ODEs were solved numerically using the Matlab fourth-
order Runge Kutta (Jameson et al., 1981), as applied in theMATLAB
ode45 function assuming non-stiff equations (Hanselman and
Littlefield, 1997). The partial differential equations (PDEs) were
solved using a fourth-order Runge Kutta on a two-dimensional
100 × 100 square lattice, with periodic boundary conditions.
The diffusion scheme that was used was a second-order leapfrog
scheme (Alexander, 1977).

2.2. Stochastic simulation

Monte Carlo simulations of the studied model were performed
on a two-dimensional 100 × 100 square lattice with periodic
boundary conditions. We initiated the reactants at random posi-
tions and enacted each reaction separately. We computed at each
lattice point the probability of each reaction and performed re-
actions according to the prescribed probabilities. At high reaction
rates, we used a Poisson approximation (Aparicio and Solari, 2001).
The simulation updating was asynchronous (i.e. the lattice sites
were updated one at a time with a random order). In each time in-
terval (dt) all lattice siteswere updated based on the current values
in the lattice. The dynamicswere simulated for different parameter
values. The lattice size used was the two-dimensional 100 × 100
unless otherwise noted. The simulation was described in detail in
previous publications (Agranovich et al., 2006; Behar et al., 2012;
Davidovich and Louzoun, 2013).

3. Model presentation

Our model describes a population of microorganisms in an en-
vironment that allows growth in principle; however the growth re-
source is not directly available for the cells tometabolize but rather
needs to be actively extracted. This situation is encountered, for
example, when complex sugars need to be hydrolyzed by enzyme
secretion (Carlson and Botstein, 1982; Jones et al., 1992) or iron
needs to be chelated (Hider and Kong, 2010). The cooperative pub-
lic goods problem is formalized in this context as follows: one type
of cell, with a population size NP , produces the growth resource,
while the other type, with a population size NNP does not. The two
sub-populations consume the resource C and proliferate following
resource consumption. It is important that the resource is abso-
lutely essential for growth, as further discussed below. The fitness
difference between the two sub-populations is modeled as a lower
net death rate of the non-productive type, representing the cost
or internal resources invested to create the growth resource C .
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These definitions create an indirect interaction between the two
sub-populations mediated through the environment.

We formulate the public goods game first in terms of ordinary
differential equations, where the variables, NP ,NNP , C represent
continuous densities of the productive population, non-productive
population and growth resource respectively in a well-mixed
environment. We imagine that the growth-limiting public good is
extracted fromsomeexternal source, as in the examples of external
iron chelation or hydrolization of an external carbon source. This
constrains the rate of public good production to be bounded even
for high densities of productive population (Elhanati et al., 2011).
The differential equations representing the model are then as
follows:

dNNP

dt
= (α(C) − 1)NNP

dNP

dt
= (α(C) − δ)NP

dC
dt

=
µNP

ν + NP
− k (α(C)NNP + α(C)NP) .

(1)

In this system we define the time unit to be the inverse death rate
of the non-productive population NNP , with no loss of generality.
The growth of both population depends on the resource density
through the function α(C), an increasing monotonic concave
or linear functions of C . The advantage of non-producers over
producers is expressed through the condition δ > 1 implying a
lower net growth rate at all values of C . The resource is produced
at a rate that depends on the size of the productive population,
saturating hyperbolically, with parameters µ, ν. Values of the
parameters used in the simulations are specified in Table 1.

The ‘‘tragedy of the commons’’ is reflected in this dynamical sys-
tem as it has only one stable fixed point in which the populations
both become extinct. This property stems from the fact that the
growth resource has no substitute and that in its absence the pop-
ulations cannot survive. While this property is sometimes too ex-
treme to describe realistic situations, it is theoretically important
to consider it in order to distinguish different mechanisms allow-
ing coexistence — different rescue scenarios from the tragedy.

The dynamical system (1) has an additional fixed point in
which the productive population NP sustains itself, and a balance
is achieved between resource consumption and production. This
fixed point undergoes a bifurcation and disappears if consumption
exceeds growth rate (Elhanati et al., 2011). However even in the
region where it is stable with respect to the resource, this fixed
point is not stable to invasion of the non-productive population
NNP (see Appendix A in Supplementary material).

To introduce spatial distribution of the populations and the re-
source into the model, we first extend the dynamical system (1) to
include diffusion terms, resulting in the partial differential equa-
tions

∂

∂t
NNP = (α(C) − 1)NNP + DNP∇

2NNP

∂

∂t
NP = (α(C) − δ2)NP + DP∇

2NP

∂

∂t
C =

µNP

ν + NP
− k (α(C)NNP + α(C)NP) + DC∇

2C,

(2)

where all dynamical variables are now functions both of time t
and space r: NNP = NNP(r, t), with r = (x, y) for two dimen-
sional space. These variables now have also spatial dynamics de-
scribed by the diffusion operator, in two dimensions ∇

2
=

∂2

∂x2
+

∂2

∂y2
, and characterized by three respective diffusion coefficients

DNP ,DP ,DC . It is biologically reasonable that cellular diffusion does
not depend strongly on a physiological cell state such as gene ex-
pression; we therefore take the diffusion coefficient for both cells
Table 1
A definition of all parameters in model (1).

Parameter Description Value

α (C) The growth rate of the populations α (C) = 0.01C
δ The death rate of the population NP 1.05
µ Maximal production rate of resource by NP 110
ν Saturation parameter of resource production 100
k Inverse yield 0.5

to be the same and that of the resource generally different. Numer-
ical integration of these equations shows results similar to those
of the non-spatial model in terms of the long-time dynamics: for
an initial condition where the populations are of equal size, the
non-productive population first increases relative to the produc-
tive one and then the system flows towards the state where the
two populations become extinct (Fig. C1 in Supplementary mate-
rial). More generally, one can test for Turing instability around the
fixed point by linear stability analysis of the space-extended sys-
tem. It is found that in the region of parameters where the ODE
eigenvalues are negative, so are the PDE eigenvalues and therefore
this system does not display Turing instability (see Appendix B in
Supplementary material).

4. Stochastic simulations

When the same system is described by discrete stochastic reac-
tions, a completely different type of dynamics emerges. We define
the model by a set of discrete stochastic interactions; the variables
now represent numbers of cells/molecules instead of densities; the
two populations are characterized by the following production and
death reactions:

• NP
α(c)
−−→ NP + NP

• NP
1
−→ φ

• P
α(c)
−−→ P + P

• P
δ
−→ φ,

where P and NP are a single producer and non-producer re-
spectively, and c is a unit of resources. Values above the arrows
represent the reaction probabilities per unit time. The resource
molecules are produced by the productive population and con-
sumed by both populations also in discrete, stochastic events:

• P
µ

ν+P
−−→ P + c

• P + c
kα(c)
−−→ P

• NP + c
kα(c)
−−→ NP .

Finally, diffusion is performed through a randomwalk of organisms
and resources to randomly chosenneighboring sites,with diffusion
rates of DP ,DNP and DC respectively.

Themean field description of this system is given by Eq. (1), and
the spatial continuous (‘‘reaction–diffusion’’) approximation by
Eq. (2).

We studied this systemby running stochastic simulations of the
reactions onone and twodimensional lattices. Each lattice site con-
tains a discrete number of cells, thus incorporating the effect of de-
mographic noise. In most of the simulations we took the diffusion
coefficient to be equal for the two phenotypes, although this was
not essential for obtaining the main results. For more details about
the stochastic simulation see Methods.

The results of the simulation show that spatio-temporal pat-
terns develop in the system as illustrated in Fig. 1. Fig. 1(a), (b)
show two-dimensional density maps of non-producing 1(a) and
producing 1(b) cells for a small cellular diffusion coefficient. These
snapshots were taken after 1000 time steps; at this time point
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Fig. 1. Stochastic simulation results of the spatial model. (a)–(d) Population diffusion coefficients of DN = DNP = 10−3 . Snapshots of occupancy map for
NNP (a) and NP (b). (c) Space-averaged occupancy of the populations as a function of time: producing (solid green line) and non-producing (dashed red line).
(d) Local concentration in one lattice site as a function of time: producing (solid green line) and non-producing (dashed red line) cells. (e)–(h) Population diffusion coefficients
of DN = DNP = 2 · 10−2 . Snapshot of NNP (e) and of NP (f). (g) Space-averaged occupancy as a function of time. (h) Local concentration in one lattice site as a function of
time. Parameters used for all simulations: α(C) = 0.01C, δ = 1.05, k = 0.5, µ = 110, ν = 100, DC = 10−2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
the average populations have already been stabilized. The non-
productive population has become extinct, while the producing
one maintains a spatially varying nonzero density. This state was
achieved from an initial condition of a mixed population, indicat-
ing that it is stablewith respect to invasion of non-productive cells.
In contrast, Fig. 1(e), (f) show density maps in which both sub-
populations are nonzero; thus when the diffusion coefficient is
higher, the dynamics, starting from the same initial condition, con-
verges to a state of coexistence. We see that in this simulation, co-
existence between producing and non-producing sub-populations
is supported for extremely long timescales and is characterized by
spatio-temporal patterns, as shown in Fig. 1(e), (f), (h).

The number of cells in each lattice site is not restricted in our
model and can take any non-negative integer value. However in
order to highlight the question of coexistence, we define the oc-
cupancy of each cell type at a lattice site to be 0 if there are no
cells of that type and 1 if there are any positive number of cells.
The mean occupancy, i.e. the occupancy averaged over all lattice
sites (a number between 0 and 1), is plotted in Fig. 1(c), where it is
seen that in the long run the system settles into a state with only
producing cells whereas the non-producers have become extinct.
In contrast, Fig. 1(g) shows the same plot for the higher diffusion
coefficient where coexistence can be clearly observed to occur and
persists for entire length of the simulation. Inspection of Fig. 1(g),
(h) shows that, while a sizable fraction of space is populated by
non-producing cells (Fig. 1(g)), there is a non-negligible fraction
which carries exactly zero non-producers.Moreover, inmixed sites
the non-producers’ local population size is typically much smaller
than that of the producers; this observation turns out to play an
important role in the coexistence mechanism as discussed later.

5. Dependence of coexistence on diffusion coefficients

Clearly by Fig. 1 coexistence depends on the populations’ (com-
mon) diffusion coefficient. To quantify this dependence we plot in
Fig. 2 the asymptotic long-time mean occupancy of the two cell
types as a function of diffusion coefficient. Fig. 2(a) shows that for
a small cellular diffusion coefficient


DP ,DNP < 10−2


, the non-

productive population has become extinct in the long run and the
productive population survives and takes over the entire space; the
mean occupancy of producing cells is 1 and that of non-producing
cells is 0. This is the long-time solution whose transient space-
averaged dynamics was presented in Fig. 1(c) and a corresponding
spatial snapshot in Fig. 1(a), (b). The survival of the producer pop-
ulation in this regime relies on spatial segregation and is similar
to a group advantage mechanism (Roberts, 2005; Alexander and
Borgia, 1978).

At the other extreme of fast diffusion

DP ,DNP > 4 · 10−1


the

populations will rapidly mix, the produced public good will be
shared equally by all and the system will converge to the mean
field solution, the empty state. This is seen in Fig. 2(a) as bothmean
occupancies become zero at the right end of the plot.

An interesting behavior arises in between: if the diffusion co-
efficient is in an intermediate range


10−2 < DP ,DNP < 4 · 10−1


,

the two sub-populations can coexist. At the lower end of this
regime, the mean occupancy of non-producers increases contin-
uously from zero indicating that in some lattice sites both types
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Fig. 2. Coexistence depends on the cellular diffusion coefficient. (a) Space-averaged occupancy of NNP (dashed red line) and NP (solid green line) in stochastic simulation as
a function of cellular diffusion coefficient. (b) Percent of the lattice sites with only NP and no NNP (solid green line), with only NNP and no NP (dashed red line), and with both
NP and NNP (solid black line). Parameters used for all simulations: α1(C) = 0.01C, δ = 1.05, k = 0.5, µ = 110, ν = 100, DC = 10−2. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
coexist locally whereas in others only producers exist. As the dif-
fusion coefficient increases in this regime, both mean occupancies
reach one, before decreasing together to zero. Fig. 2(b) shows the
fraction of sites in which each sub-population survives separately,
showing that generally non-producers cannot populate a site on
their own for a long time.

The simulation results presented so far were performed with
the same linear growth rate as a function of resource for both
sub-populations. However the results are more general; we have
repeated the simulations and analysis in a parallel system where
the growth rate is a non-linear (Monod) function of the resource,
with similar results (Appendix C in Supplementary material).

To understand the behavior across diffusion coefficients, we
imagine an initial spatial distribution consisting of separate islands
of NNP and NP , as illustrated in Fig. 3(a). Now consider how this
configuration will evolve in the presence of diffusion. If the popu-
lations are diffusing extremely slowly, onemay view each island as
practically independent; this situation provides privileged share to
the producers because of their clustering and deprives access from
thenon-producers for the same reason. Therefore, only the produc-
tive population NP can sustain itself in its islands while the non-
productive population will become locally extinct, as illustrated
in Fig. 3(b). On the longer timescales characteristic of diffusion,
those patches in which only producing cells survived will invade
the empty regions, resulting in only one possible outcome in the
long run: a population of producing cells uniform in space, as illus-
trated in Fig. 3(c) (see also Fig. 1(a)–(c)).

If the populations are diffusing extremely rapidly, the islands
will first mix such that each site contains both cell types. Then
the entire population will have the same access to the produced
resource and the system will behave as in the mean field: at
first non-producers will take over and then both NP and NNP
will become extinct. This scenario is illustrated schematically in
Fig. 3(a), (f), (g).

In the regime of intermediate diffusion coefficient, non-
producing cells can invade into the producing clusters, but al-
though their growth rate at a given resource concentration is
higher, they will not necessarily take over the population and the
invasion may fail with high probability. The invasion may still suc-
ceed in some regions and cycles of invasion with stochastic out-
come can support the long-term spatio-temporal patterns. This is
illustrated schematically in Fig. 3(a), (d), (e). A detailed description
of this nontrivial scenario is given in the next sections.

6. Dependence of coexistence on resource dynamics

How generic is the coexistence in parameter space? To further
explore this questionwe studied the effect of the time scales affect-
ing the dynamics. The two diffusion coefficients and the resource
turnover define several important timescales in the problem; this
is most clearly seen in nondimensional units. In the case of a linear
growth function (α (C) = αC), themodel takes the scaled form of:

∂

∂t
nNP = (c − 1) nNP + dNP∇2nNP

∂

∂t
nP = (c − δ) nP + dP∇2nP

∂

∂t
c = µ̃


nP

ν̃ + nP
− (nNP + nP) c


+ dc∇2c

(3)

with

nNP =
k
µ
NNP ; nP =

k
µ
NP ; c = αC; µ̃ = αµ;

ν =
k
µ

ν; dNP = DNP ; dP = DP ; dc = DC .

From these equations the stochastic dimensionless systems is
derived in the same way as in Section 4. Varying the diffusion co-
efficients or the resource turnover rate µ̃ has no effect on the sta-
bility of the mean field continuous system, but has a crucial effect
on the stability of the stochastic system, as already seen in the pre-
vious section. In order to display the effect of all three timescales
on the problem, Fig. 4 shows several two-dimensional coexistence
maps as a function of the two diffusion coefficient, each corre-
sponding to a different value of µ̃. White areas represent coexis-
tence, gray areas represent survival of only the productive popula-
tion, and black areas represent regions of parameters where the
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Fig. 3. Schematic illustration of the dynamics of spatial distributions in our model. The red area is islands of NNP population. The green area is islands of NP population. The
black areas are areas that include two populations NNP and NP . The white areas are areas that include neither NNP nor NP . (a) We assume a lattice with separate islands of
NNP and NP . (b–c) If the diffusion rate of the populations is extremely high, the system will behave as expected in the mean field and the only possible solution is the empty
state. (d–e) If the diffusion of the populations is in an intermediate range, the population NNP can continuously take over regions repopulated by NP . (f–g) If the diffusion of
the populations is extremely low, only the productive population, NP , can exist. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
two populations become extinct. An interesting feature of these
maps is that the diffusion coefficient of C has little effect on the
system fate until very fast diffusion where the only solution is ex-
tinction. The collapse occurs when the resources are spread out
uniformly throughout the lattice, leading to an advantage of NNP
over NP in all lattice sites.

The range of coexistence increases with the resource turnover
rate (high µ̃ values). In order to understand why increasing µ in-
creases the survival range the mechanism for coexistence must be
understood.

7. Dynamic mechanism underlying coexistence

To better understand the coexistence dynamics, we change
variables and describe the system in terms of the resource, the to-
tal producer and non-producer population N = NNP + NP and the
fraction of non-producers in the population R =

NNP
N . Changing

variables in the continuous homogeneous system Eq. (1) leads to
the following equations:

dN
dt

= [(α(C) − δ) + (δ − 1)R]N

dR
dt

= R(1 − R)(δ − 1)

dC
dt

=


µ

ν/(1 − R) + N
− kα(C)


N.

(4)

It is seen that R is always increasing, and thus asymptotically will
tend to 1, leading to the complete takeover of non-producers in this
approximation. However, the rate at which this process proceeds
is proportional to (δ − 1), typically a very small parameter. It is
seen from the equations thatN, C derivatives contain zero-th order
terms in this small parameter while the R derivative does not, and
thus its dynamics is slow relative to the other variables. We there-
fore consider in detail the dynamics of invasion of non-producing
cells into a region where producers maintain equilibrium with the
growth resource.

In the absence of non-producers (R = 0), a stable equilibrium
is obtained between C and N at α(C∗) = δ and N∗

=
µ

kδ − ν. In
our simulations typically this local population is large (N∗

≈ 100).
The system behaves there as a stable predator–prey system, with
oscillatory trajectories around the stable fixed point for most of
parameter space, as can be found directly from a stability analysis.
(If k2α′(C) (ν + N)2 ≥ µ, convergence to the stable fixed point is
direct and not oscillatory.)

Following an invasion, R > 0, the total population N and the
resource C decrease, thus decreasing fitness for all; the non-
producers ‘‘overburden’’ the group they belong to by their presence
(Avilés, 2002). However this happens at rates of order 1, while the
fraction R increases at a rate of order (δ − 1). Since NNP = RN , the
absolute number of non-producerswill decrease even though their
fraction increases in the continuous approximation. And since the
absolute number of invaders is small, the effect of a decrease in re-
source, and the consequent decrease in the absolute growth rate,
will be more dramatic and their extinction — a likely event. At the
same time, the large population of producers will also decrease but
will most likely remain far from extinction. The invasion will then
fail, andNNP will rapidly fall into its absorbing state, allowing C and
N to grow again to their steady state values C∗ and N∗.

The values C and N can be estimated, assuming that for a lim-
ited time R is approximately constant, and following the balance
between N and C (i.e. perform an adiabatic approximation in R).
The two possible solutions are either N = 0 or

α(C∗) = δ − (δ − 1)R, N∗
=

µ

kδ
1

1 −
(δ−1)

δ
R

−
ν

1 − R
(5)
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Fig. 4. Dependence of system steady state on rate parameters. White — coexis-
tence, gray — only producers survive, black — extinction of both populations. Each
panel corresponds to a different value of the resource turnover rate (µ̃ in Eq. (3)).
In each panel the type of steady state is mapped as a function of the resource diffu-
sion rate of DC (x axis) and cellular diffusion coefficient of the populations, DN ,DNP
(which is the same in these simulations; y axis). Parameters for all of the simulations
are: δ = 1.05, ν̃ = 5/11.

the latter being stable as long as it is positive. The continuous tran-
sition to extinction occurs at R =

µ
νk −δ

[ µ
νk −(δ−1)] (Fig. 5(a)). If the sys-

temwere allowed to evolve all theway to this transition, the entire
local population would collapse. However, if before this happens
the value of NNP = RN is close enough to 1 to have a high proba-
bility of it falling to the absorbing state, the system will converge
back to its meta-stable state where R = 0, and an invasion cycle
from a neighboring site can start again.

In order to check that this description is appropriate, we com-
puted the projection of the three-dimensional average flow in the
original physical variables, on the two-dimensional planes of vari-
able pairs in the stochastic simulation (Fig. 5(b)–(d)).

Fig. 5(b) shows the flow around the meta-stable point. The
grayscale represents the number of sites with a given value of
(C,NP) and the length and direction of the arrows represent the
average change between two consecutive time steps starting from
that value. This flow is typical of a predator–prey oscillatory flow
around the meta-stable fixed point, as expected from the stability
analysis above. Fig. 5(c) shows the flow in theNNP −C plane:When
NNP is high, consumption of resource exceeds production leading
to a decrease in C . When C is high it increases NNP since its net
growth rate is positive. When C is low, NNP decreases, leading to
oscillatory dynamics near the 0 value. When NNP reaches zero C
converges to themeta-stable fixed point as in Fig. 5(b). The dynam-
ics for NNP = 0 are plotted using a different grayscale since there
are many more sites with NNP = 0 than with any other value.

The more interesting flow occurs in the NNP − NP plane
(Fig. 5(d)), where both populations decrease until NNP becomes
zero and the system flows back to the meta-stable state. One can
clearly see a vortex around low values of both populations, but fol-
lowing the extinction of non-producers, producers can grow back
and the system is attracted to its steady state of Fig. 5(b).

Oneway to understand the dynamics is to compare the local dy-
namics and its timescales to the diffusion timescale. Locally there
are two scenarios possible: either the non-producers take over and
the entire population becomes extinct, or they start to increase
in fraction and then become extinct because of their small abso-
lute number and negative growth ratewhile the producers survive.
Both these processes depend on the local resource concentration.
In both cases the producers need to re-establish a local equilibrium
with the resource such that the growth rate is positive before a new
cycle of invasion can begin; this step depends strongly on the re-
source turnover rate and serves as a form of ‘‘refractory’’ period.

We can now explain the regions of coexistence in terms of these
timescales (Fig. 3). The resource turnover rate, µ̃ in Eq. (3), affects
directly the local cycle time — a small value of µ̃ induces a long
refractory period. If µ̃ is extremely small, producers can decrease
to zero, the resources can stabilize on a sub-threshold value, and
the systemmay reach the marginally stable empty state. From this
empty state the local population will grow again only through the
diffusion of producers from neighboring sites, and thus a large rate
of diffusion is required to support coexistence. However for fast
turnover (µ̃ ≥ 10), co-existence is ensured as long as the diffusion
rate is not much smaller than the time of a local cycle, allowing
also smaller diffusion rates. This can be clearly seen in Fig. 3, where
the range of coexistence can be seen to shrink drastically to 0, as
the value of µ̃ decreases below a critical value. To summarize, the
coexistence mechanism is supported by spatio-temporal patterns
that come about through the repeated transition of NNP across its
local survival–extinction phase transition. The transition is medi-
ated through a small change in C , which in turn tips the balance
of growth rate around zero. This results in trajectories that hover
around an extinction phase transition of NNP . Therefore, we expect
to observe a signature of this critical transition in the dynamics;
for example the distribution of extinction times – the time be-
tween consecutive invasions of NNP in single sites – is expected to
be broadly distributed. Fig. 6(a) depicts this distribution as com-
puted from our simulation, showing a long-term power-law decay
with a power approximately −1 (Bak et al., 1987). This is accom-
panied by the parallel long range autocorrelation of NNP (Fig. 6(b)).
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Fig. 5. (a) The quasi-steady state of N for a given R value. (b) The flow in the NP − C plane. The grayscales are probability to be in the given [NP , C] value. In all subplots,
black colors are higher concentration. The grayscales are in a log scale. (c) The flow in the NNP − C plane. The grayscales are probability to be in the given [NNP , C] value.
Black colors are higher concentration. The highest concentrations are at the NNP = 0 values. (d) The flow in the NNP − NP plane. The grayscales are probability to be in the
given [NP ,NNP ] value. The highest concentrations are at the NNP = 0 values. The parameters used for all simulations are: α (C) = 0.01C, δ = 1.05, k = 0.5, µ = 110, ν =

100,DC = 10−2,DA = 2 · 10−2 . We artificially separate the strip NNP = 0 from NNP > 0, since there are many more values for NNP = 0 than for any other particular value
of NNP > 0. We use different scales for the colors and length of arrows for the NNP = 0 than for NNP > 0 cases.
8. Discussion

We have studied a model for cooperation in microorganism
populations, taking into account both spatial mobility (diffusion
on a lattice) and demographic noise (discrete cells and stochas-
tic reactions). The model is a realization of the public-goods game
with particular relevance for active extraction of resource by mi-
crobial populations: interactions are indirectly mediated through
a dynamic environment; growth rates and production rates are
saturating functions; differences between ‘‘cooperators’’ and ‘‘de-
fectors’’ reflect modest changes in phenotype relevant to gene ex-
pression for example; and the discreteness of individuals turns out
to play an important role in the dynamics. In the continuous limit,
either in themean field or in the reaction–diffusion approximation,
the only stable state of the system is total extinction. In marked
contrast, the results of our full stochastic simulations show that the
model gives rise to coexistence of producing and non-producing
cells through the emergence of spatio-temporal patterns in a broad
range of parameter space,where diffusion coefficients are interme-
diate.

This result presents a dramatic case of the qualitative differ-
ences in the behavior of discrete stochastic reaction and diffusion
models and their PDE/ODE parallel. Such differences were initially
studied by Durrett and Levin (1994). We have shown previously
many cases of increase in the survival probability of a population
following stochastic interactions: e.g. Behar et al. (2013). However,
to the best of our knowledge, this is the first presentation of a
model where survival is induced by the presence of an absorbing
state. As such it represents a novel effect of stochastic interactions.

In terms of pattern formation in nonlinear dynamical systems,
our results illustrate an interesting mechanism. Compared to the
corresponding continuous spatial model, described by the PDE
equation (2), one finds that the continuous model does not exhibit
patterns and in particular no Turing instability occurs. Recentwork
has shown that in PDE systems where Turing instability occurs
only in a limited region of parameter space, fluctuations can signif-
icantly enlarge this region (Butler and Goldenfeld, 2011). Here we
see an example of patternswhichhavenoTuring counterpart in the
continuous system, but appear only in the full stochastic system. In
particular, no strong asymmetry between the two interacting pop-
ulations is required, and their diffusion coefficient is in fact taken to
be identical in our simulations. A more general understanding and
classification of this phenomenon remains an interesting question
for further theoretical study (Scott et al., 2011).

From an evolutionary perspective, this model apparently pro-
vides another mechanism for assortment of the two competing
sub-populations, which is known to allow for coexistence between
productive and non-productive phenotypes inhabiting a common
environment (Damore and Gore, 2012). However, assortment here
does not only break the symmetry of interaction between the com-
petitors; it is reflected also in the asymmetry with respect to the
growth-enabling environment. The productive individuals can sus-
tain a local equilibrium with a high density of cells and resource,
which turns out to be essential to their resilience to local inva-
sions. These cells hold the local environment at a state which is
close to an extinction transition for the non-productive ones; this
iswhere the discreteness of individual becomes important, and the
non-producers are driven to dynamic trajectories that locally hover
around their extinction transition point.

It should be noted that this effect overcomes the usual mutual
exclusion of populations that grow on the same substrate. This is
because these populations are not passively consuming the same
resource; they are in a two-way interaction with the environment,
both consuming and producing it (at least some sub-population).
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Fig. 6. (a) Probability to wait time T before exiting a state of NNP = 0 to a non-zero
value, (full line) and a (−1) power (dashed gray line). (b) Autocorrelation ofNNP as a
function of the time delay. This can be clearly observed to decrease logarithmically,
after an initial period.

This leads to a more complex behavior as explained above, al-
lowing for long-term coexistence. While extinction of the non-
producing species in the entire space is a nonzero event in a finite
system, it is exceedingly rare.

The dynamicmechanism underlying the emergence of patterns
is related to the vicinity of the system to a critical phase tran-
sition, the extinction transition. The concept of criticality is rel-
evant to many ecological systems, both in terms of transitions
betweendifferent behaviors and in termsof spatio-temporal corre-
lations (Pascual and Guichard, 2005). Ecological models are often
formulated in terms of cellular automata with a small number of
states; qualitatively different behaviors are identified depending
on the existence of delay (or refractoriness) between perturba-
tion and recovery (Greenberg and Hastings, 1978). In contrast, the
model studied here derives from differential equations and has an
infinitely large number of possible states — the number of cells in
a lattice site is discrete but unbounded. The recovery timescale af-
ter extinction of one cell type is therefore determined by the lin-
ear stability eigenvalues of the partial dynamical system, which
can be large or small depending on local parameters. Therefore
this system presents a case where different ‘‘critical-like’’ behav-
iors are observed, interpolating between delayed and non-delayed
dynamics.

Inmost systems described as self-organizing into a critical state,
there is an external slow driving force which keeps the system in
the vicinity of a phase transition (Dickman et al., 2000). Here, in
contrast, the system is driven to reside near a critical point by the
interactions between its elements. The slowness is provided by the
small differences in the net growth rate of the two microbial sub-
populations, corresponding to the notion that gene expression or
other phenotypic properties affect global metabolism and growth
rate only moderately. Note also that the dynamics can be strongly
affected by trajectories hovering around the critical point although
it is never actually at that point. It is expected that in complex sys-
tems with several interacting degrees of freedom such behavior
will be found often.

The emergence of spatio-temporal patterns is expected to be
observed in experiments. Strains of both yeast and bacteria with
defined properties with respect to resource extraction have been
developed and studied. Recent work has shown the possibility to
grow microbial populations in controlled solid plates with diffu-
sion effects playing an important role in the dynamics (Julou et al.,
2013). Parameter space can be examined by changing the plate
medium to vary diffusion coefficient, which is an important control
parameter in the system. Although our model is simple and real-
istic systems are expected to display additional complications, the
basic effect of coexistence by spatio-temporal patternsmay still be
found in some experimental realization. We have recently shown
that a similar mechanism can affect disease dynamics (Agranovich
and Louzoun, 2012). Future experimental and theoretical work is
required to advance toward this goal.
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